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A B S T R A C T   

This paper deals with modeling and simulation of the novel coronavirus in which the infectious individuals are 
divided into three subgroups representing three forms of infection. The rigorous analysis of the mathematical 
model is provided. We provide also a rigorous derivation of the basic reproduction number R 0. For R 0 < 1, we 
prove that the Disease Free Equilibium (DFE) is Globally Asymptotically Stable (GAS), thus COVID-19 extincts; 
whereas for R 0 > 1, we found the co-existing phenomena under some assumptions and parametric values. 
Elasticity indices for R 0 with respect to different parameters are calculated with baseline parameter values 
estimated. We also prove that a transcritical bifurcation occurs at R 0 = 1. Taking into account the control 
strategies like screening, treatment and isolation (social distancing measures), we present the optimal control 
problem of minimizing the cost due to the application of these measures. By reducing the values of some pa-
rameters, such as death rates (representing a management effort for all categories of people) and recovered rates 
(representing the action of reduction in transmission, improved screening, treatment for individuals diagnosed 
positive to COVID-19 and the implementation of barrier measures limiting contamination for undiagnosed in-
dividuals), it appears that after 140 − 170 days, the peak of the pandemic is reached and shows that by continuing 
with this strategy, COVID-19 could be eliminated in the population.   

Introduction 

Since the last quarter of 2019, a deadly pandemic of rapid evolution, 
COVID-19 (SARS-CoV-2) has spread around the world. The acronym 
refers to Severe Acute Respiratory Syndrome in reference to the previous 
2003 epidemic caused by a related coronavirus. This disease is so con-
tagious that it affects the respiratory tract. It is transmitted from animal 
(host) to animal (intermediate host), intermediate host to human and 
human to human. A pandemic occurs when a new virus spreads around 
the world. As long as people are less protected against this new virus, 
they are more prone to be sick. Its transmission is spread through the 
droplets of an infected person when he cough, sneez, sing, speak, breath 
heavily etc. which are sprayed in the air. This COVID-19 can also be 

spread after infected people sneeze, cough or touch surfaces or objetcs. 
Other people may become infected by being in close or direct contact 
with the infected people or by touching contaminated surfaces or objects 
then touch their eyes, noses or mouths prior to cleaning their hands 
[1,2]. Normally, the symptoms develop on an average of 5 to 7 days after 
contamination, with extremes ranging from 2 to 12 days. For precaution, 
a period of 14 days is considered for isolation. To fully understand the 
mechanisms of this invisible transmission, a distinction must be made 
between incubation, the period between the initial encounter with the 
virus and the appearance of the first symptoms; and contagiousness, the 
period during which a person can transmit the disease. According to a 
Chinese study of 191 patients, the incubation period is on average two 
days with extremes ranging from 0 to 24 days, and contagiousness is 
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about 20 days after the onset of clinical signs – whether symptomatic or 
not – with a maximum of 37 days [3]. 

In Europe, researchers estimated that COVID-19 was introduced into 
France ”around mid-January”. However, this estimation is somewhat 
fragile insofar as the diversity observed between the sequenced viral 
strains is very low and researchers currently have only a small number of 
representative samples from different regions of France [4]. Individuals 
of 70 years and older [5] infected with COVID-19 and having a chronic 
heart disease, chronic lung disease, cancer and immunodeficiency, and 
diabetes are at risk of death. But currently the mechanisms linked to 
thromboembolic disease seem to be the most incriminated and are 
increasingly known [6,7]. 

COVID-19 can circulate incognito. Understanding the mechanisms of 
its transmission by people with no symptoms is essential. Symptomless 
infected people, unaware that they are infected, so they do not protect 
themselves and tend to unintentionally infect others repeatedly. 

The basic reproduction number (R 0) is essential for modelling the 
evolution of the disease as it is done in [8]. This number depends on the 
population density, the average duration of infection and the ease with 
which the virus is transmitted. In order to assess it, investigations must 
be carried out: we try to go up to the chain of transmission. The aim is to 
find out who was infected by whom, mentioned an Asian study [9]. The 
time that elapses between the onset of symptoms in an infectious person 
and the onset of symptoms in an infected person is still much debated. A 
new American study puts it at 7 or 8 days (compared to 4.6 days in the 
Chinese study). This in comparison with the values of R0 in the USA and 
in China oscillating from 2 to 4 as reported in [10]. 

The first positive case of COVID-19 in Democratic Republic of the 
Congo (DRC) was detected on 10 March 2020, and after 6 weeks the 
country compted already 400 positive patients and after 3 months more 
than 5000 cases [11]. Several scenarios have been proposed to reflect 
the evolution of this disease in the world and in some countries. The 
research’s question was to know what was the main reason of the evo-
lution of this disease in DRC. The simulations were carried out in two 
stages, during the upward and downward slopes of the epidemic. The 
profile of the index case would have an influence on the contact cases, so 
discussions are still opened on this subject. One team argued that it 
would make no difference and a more recent study supports arguments 
to the contrary [10], they showed that asymptomatic people would have 
lower transmissibility. 

Several mathematical models have been developed by researchers in 
an attempt to control the spread of infectious diseases in general 
[12–18] and COVID-19 in particular. More recently [19] proposed and 

analyzed compartmental model of Covid-19 to predict and control the 
pandemic. [20] presented mathematical results of a fractional model 
considering that the seafood market is an important source for COVID- 
19 infection. [21] presented a mathematical model by identifying the 
endemicity parameters of COVID-19 and determine which parameter is 
the most dominant to affect the disease endemicity. [22] proposed a 
model based on Atangana-Baleanu-Caputo (ABC) derivative with two 
compartments (healthy and infected). [23] proposed a model based on 
fixed point and establish related existence results under ABC derivative 
with fractional order. [24] studied a mathematical model based on a 
fractional Atangana-Baleanu (AB) operator. [25] presented a model 
with three compartments (susceptible, infected and recovered) which is 
extended into a stochastic model in [26]. A model with four compart-
ments (susceptible, exposed, infected and recovered) is discussed in 
[27]. 

Unfortunately, most mathematical models of COVID-19 consider 
that all individuals, regardless of age, are susceptible to the same form of 
COVID-19 infection and all infected individuals have the same cure rate 
in the population. In this paper, we propose a mathematical model 
which assume that it would have differences, so the infected individuals 
were divided into 3 groups; (1) people with a low risk of developing 
complications, most of whom are asymptomatic carriers, in our case it 
was assimilated to young people; (2) people with a moderate risk of 
developing severe symptomatology, and (3) those with a high risk of 
developing complications with a high death rate. In addition, they are 
also those who have a high proportion of comorbidity. Congolese pop-
ulation configuration is a broad-based pyramid while the western and 
industrialized countries configuration is narrowed with a flared top 
reflecting a large proportion of elderly people. 

This paper is structured as follow: Firstly we presente the model 
description. Secondly we show the mathematical analysis of model 
proposed. Thirdly we presente the elasticity indices of the basic repro-
duction number R 0 with respect to the model parameters. Fourthly we 
discuss the optimal control problem of the model and finally some nu-
merical simulations are presented before discussing the obtained results. 

Description of the model and settings 

A compartmental model of COVID-19 

Let us consider N as the total population and assume that anyone is 
susceptible to catch COVID-19. N is composed by seven compartments S,
E, I1, I2, I3,R and D which represent respectively susceptible, exposed, 

Fig. 1. Transfer diagram describing the COVID-19 dynamics.  
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infectious benign form (young people), infectious respiratory form 
(adults people), infectious reanimatory form (old and comorbidity 
people), recovered and COVID-19 deaths. We note by a, μ and d respec-
tively the birth rate, the natural mortality rate and the mortality rate due 
to COVID-19. Susceptible S will be exposed if they are in contact with 
infectious persons (I1, I2 and I3) at a transmission rate β. Exposed in-
dividuals will progress to the infectious compartment I according to the 
rates ρ1 for form I1, ρ2 for form I2 and ρ3 for form I3. Infectious in-
dividuals can be removed according to the rates γ1 for I1 form, γ2 for I2 
form and γ3 for I3 form. The mortality rates due to COVID-19 for in-
dividuals I1, I2 and I3 are denoted by d1, d2 and d3 respectively. We as-
sume that I = I1 + I2 + I3. The dynamics of Coronavirus transmission 
are shown in Fig. 1. 

Based on Fig. 1 we obtain the equation system (1). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = aN − β
S(t)I(t)

N
− μS

(

t
)

,

Ė = β
S(t)I(t)

N
−

(

ρ1 + ρ2 + ρ3 + μ
)

E
(

t
)

,

İ1 = ρ1E
(

t
)
−
(

μ + γ1 + d1

)
I1

(
t
)
,

İ2 = ρ2E
(

t
)
−
(

μ + γ2 + d2

)
I2

(
t
)
,

İ3 = ρ3E
(

t
)
−
(

μ + γ3 + d3

)
I3

(
t
)
,

Ṙ =
∑3

i=1
γiIi

(

t

)

− μR

(

t

)

,

Ḋ =
∑3

i=1
diIi

(

t

)

,

I =
∑3

i=1
Ii

(

t

)

,

N = S + E + I1 + I2 + I3 + R + D.

(1) 

By dividing all terms of system (1) by N, we define s = S
N ; e = E

N, i =
I
N ; 

d = D
N and r = R

N, we obtain the equation system (2): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = a − βsi − μs,
ė = βsi − (ρ1 + ρ2 + ρ3 + μ)e,
ik = ρke − (μ + γk)ik,

ṙ =
∑3

k=1
γiik − μr,

ḋ =
∑3

k=1
dkik,

i =
∑3

k=1
ik.

(2) 

With s+e+i1 +i2 +i3 +r+d = 1 and ρ1 + ρ2 + ρ3 = 1. Then s, e, ik, r,
d with k = 1,2,3represent the proportions and take values in the closed 
interval [0,1]. 

Model parameters 

Parameters used in this paper were taken from the literature or based 
on reported data from DRC. Table 1 presents description, meaning and 
estimated baseline values of all used parameters. 

Mathematical analysis 

Positivity and boundedness of the solution 

This subsection is provided to prove the positivity and boundedness 
of solutions of the system (2) with initial condition 
(

s(0), e(0), i1(0), i2(0), i3(0), r(0), d(0)
)⊤

∈ [0,1]7. 

Lemma 0.1. Suppose Ω⊂[0, 1] × Cnis open, fi ∈ C(Ω, [0, 1]),
i = 1,2,…, n. If fi

⃒
⃒
xi(t)=0,Xt ∈ Cn

+0⩾0,Xt = (x1t , x2t ,…, x1n)
T
, i = 1,

2,…, n. Then Cn
+0{ϕ1,ϕ2,…,ϕn} : ϕ ∈ C([ − τ, 0], [0, 1]n) is the invariant 

domain of the following equations:dxi(t)
dt = fi(t,Xt

)
, t⩾τ, i = 1,2,…, n where 

[0, 1]n = {(x1,x2,…,xn) : xi⩾0, i = 1,n} [1]. 

Proposition 0.2. The system (2) is invariant in [0, 1]7. 

Proof. By re-writing the system (2) we have: 

dX
dt

= M(X(t)); X(0) = X0⩾0withM(X(t)) = (M1(X)),M2(X),…,M7(X) )T  

M(x(t)) = (M1(x)), M2(x), …, M7(x)). we note that: ds
dt

⃒
⃒
⃒
⃒
s=0

= a ∈

[

0,

1
]

dik
dt

⃒
⃒
⃒
⃒
ik=0

= ρke ∈

[

0, 1

]

de
dt

⃒
⃒
⃒
⃒
e=0

= βsi ∈ [0, 1

]

dr
dt

⃒
⃒
⃒
⃒
r=0

=
∑3

k=1γkik ∈

[

0,

1
]

dd
dt

⃒
⃒
⃒
⃒
d=0

=
∑3

k=1dkik ∈ [0, 1
]

Then it follows from the Lemma 0.1 that is 

an invariant set [0, 1]7. □ 

Proposition 0.3. The system (2) is bounded in the region 

Ω =
(

s, e, i1, i2, i3, r, d
)
∈ [0, 1]7, s+ e+ i1 + i2 + i3 + r+ d⩽

a
μ   

Proof. From the system (2) we observed that 

dn
dt

= a − μn  

n
(

t
)
=

a
μ+Ke− μt  

with K ∈ R, an integration constant. 

Table 1 
Parameters description, meaning and estimated baseline values.  

Parameters Meaning Estimated baseline values 

a Recruitement rate 0.304  
β  Transmission rate 0.3  
ρ1  Progression rate from E to I1  0.575  
ρ2  Progression rate from E to I2  0.377  
ρ3  Progression rate from E to I3  0.048  
μ  Natural mortality rate 1.92× 10− 2  

d1  Mortality rate due to COVID-19 for I1  10− 4  

d2  Mortality rate due to COVID-19 for I2  5× 10− 4  

d3  Mortality rate due to COVID-19 for I3  0.20  
γ1  Recovered rate for I1  0.025  
γ2  Recovered rate for I2  1.25× 10− 2  

γ3  Recovered rate for I3  625× 10− 5   
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lim
t⟶+∞

supn
(

t
)

=
a
μ  

Hence the system (2) is bounded. □ 

Diseases Free Equilibrium and basic reproduction number 

The Diseases Free equibrium (DFE) is obtained for the system (2) by 
supposing e = i1 = i2 = i3 = r = d = 0 which is denoted by 

X*
0 =

(
s☆ =

a
μ, 0, 0, 0, 0, 0, 0

)

By using the next generation method as applied in [28,29], we find 
the reproduction number denoted by R 0. For that, we consider only the 
compartments which are infected from the system (2) and decompose 
the right hand side as F − V , where F is the transmission part, 
expressing the production of the new infection, and the transition part is 
V , which describe the change in state: 

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β(i1 + i2 + i3)s
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

; V =

⎛

⎜
⎜
⎜
⎜
⎝

(ρ2 + ρ3 + μ)e
ρ1e + (μ + γ1 + d1)i1
ρ2e + (μ + γ2 + d2)i2
ρ3e + (μ + γ3 + d3)i3
γ1i1 + γ2i2 + γ3i3 + μr

⎞

⎟
⎟
⎟
⎟
⎠

The Jacobian of F and V at the DFE X*
0 give 

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
a
μ β

a
μ β

a
μ β

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V

=

⎛

⎜
⎜
⎝

ρ1 + ρ2 + ρ3 + μ 0 0 0
ρ1 μ + γ1 + d1 0 0
ρ2 0 μ + γ2 + d2 0
ρ3 0 0 μ + γ3 + d3

⎞

⎟
⎟
⎠

Following [28], R 0 = ρ
(
− FV− 1), where ρ is the spectral radius of 

the next-generation matrix ( − FVG??1). 
Thus, from the system (2), we have: 

R 0 =
aβ

μ (ρ1 + ρ2 + ρ3 + μ)

(
ρ1

μ + γ1 + d1
+

ρ2

μ + γ2 + d2
+

ρ3

μ + γ3 + d3

)

(3)  

Stability of the diseases free equilibrium 

aaa 

Theorem 0.4. The disease free equilibrium 
(

DFE)X*
0 =

(
a
μ, 0,0, 0,0, 0,

0
)

of the system (2) is locally stable if R 0 < 1 and unstable if R 0 > 1 

Proof. From the model system (2), the Jacobian at DFE is given by:   

To define the characteristic equation, we note λ as the eigenvalue of 
the matrix JX*

0
. We obtain the following result: 

Det
(

JX*
0
− λI

)
= 0

⇒ (λ + μ)2
− ρ1

(aβ
μ

)(
μ + γ2 + λ

)(
μ + γ3 + λ

)

−
(

μ + γ1 + λ
)[

ρ2

(aβ
μ

)(
μ + γ3 + λ

)
− Z +

(
μ + γ2 + λ

)(aβ
μ

)
ρ3

]
= 0 

Where Z = (μ + γ2 + λ)(ρ1 + ρ2 + μ + λ)(μ + γ3 + λ). 

⇒
− aβ

μ ρ1

(
μ+ γ2 + d2 + λ

)(
μ+ γ3 + d3 + λ

)
+
(
− μ − γ1 − d1 − λ

)

(
− ρ1 − ρ2 − ρ3 − μ − λ

)(
μ+ γ2 + d2 + λ

)(
μ+ γ3 + d3 + λ

)

+
aβ
μ ρ3

(
μ+ γ2 + d2 + λ

)
+

aβ
μ ρ2

(
μ+ γ3 + d3 + λ

)]
= 0  

⇒
− aβ

μ ρ1

(
μ+ γ2 + d2 + λ

)(
μ+ γ3 + d3 + λ

)
−
(

μ+ γ1 + d1 + λ
)

(
ρ1 + ρ2 + ρ3 + μ+ λ

)(
μ+ γ2 + d2 + λ

)(
μ+ γ3 + d3 + λ

)

+
aβ
μ ρ3

(
μ+ γ2 + d2 + λ

)
+

aβ
μ ρ2

(
μ+ γ3 + d3 + λ

)]
= 0   

⇒
aβ
μ [ρ1(μ+ γ2 +d2 +λ)(μ+ γ3 +d3 +λ)+ρ2(μ+ γ1 +d1 +λ)(μ+λ3 +d3 +λ)

+ρ3(μ+ γ1 +d1 +λ)(μ+ γ2 +d2 +λ)]

=
(

μ+γ1+d1+λ
)(

ρ1 +ρ2+ρ3 +μ+λ
)(

μ+λ2 +d2 +λ
)(

μ+γ+d3+λ
)

⇒
aβ
μ

[
ρ1

(μ + γ1 + d1 + λ)(ρ1 + ρ2 + ρ3 + μ + λ)

+
ρ2

(ρ1 + ρ2 + ρ3 + μ + λ)(μ + γ2 + d2 + λ)

+
ρ3

(ρ1 + ρ2 + ρ3 + μ + λ)(μ + γ3 + d3 + λ)

]

= 1  

⇒
aβ

μ(ρ1 + ρ2 + ρ3)

[
ρ1

μ + γ1 + d1 + λ
+

ρ2

μ + γ2 + d2 + λ
+

ρ3

μ + γ3 + d3 + λ

]

= 1 

Denote 

JX*
0
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− μ 0
− aβ

μ
− aβ

μ
− aβ

μ 0

0 − ρ1 − ρ2 − ρ3 − μ aβ
μ

aβ
μ

aβ
μ 0

0 ρ1 − μ − γ1 − d1 0 0 0

0 ρ2 0 − μ − γ2 − d2 0 0

0 ρ3 0 0 − μ − γ3 − d3 0

0 0 γ1 γ2 γ3 − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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G1

(

λ
)

=
aβρ1

μ(ρ1 + ρ2 + ρ3 + μ + λ)(μ + γ1 + d1 + λ)

+
aβρ2

μ(ρ1 + ρ2 + ρ3 + μ + λ)(μ + γ2 + d2 + λ)

+
aβρ3

μ(ρ1 + ρ2 + ρ3 + μ + λ)(μ + γ3 + d3 + λ)

We rewrite G1(λ) as G1(λ) = G11(λ) + G12(λ) + G13(λ). 
Now if Re(λ)⩾0,λ = x + iy, then |G11(λ)|⩽G11(x)⩽G11(0)

|G11(λ)|⩽
aβρ1

μ|ρ1 + ρ2 + ρ3 + μ + λ||μ + ρ1 + d1 + λ|
⩽G11

(

x
)

⩽G11

(

0
)

|G12(λ)|⩽
aβρ2

μ|ρ1 + ρ2 + ρ3 + μ + λ||μ + ρ2 + d2 + λ|
⩽G12

(

x
)

⩽G12

(

0
)

|G13(λ)|⩽
aβρ3

μ|ρ1 + ρ2 + ρ3 + μ + λ||μ + ρ3 + d3 + λ|
⩽G13

(

x
)

⩽G13

(

0
)

Then 

G11(0)+G12(0)+G13(0) = G1(0) = R0 < 1,

which implies 

|G1(λ)|⩽1 

Thus for R 0 < 1, we can found that all λ of the characteristics 
equation G1(λ) = 1 has negative real parts. 

As a consequence, if R 0 < 1, all λ are negatives and the DFE noted by 
X*

0 is locally asymptotically stable. 
Now, by considering R 0 > 1, that is mean G1(0) > 1, then 

lim
λ→∞

G1

(

λ
)

= 0 

Then there exists λ*
1 > 0 such that G1(λ*

1) = 1. This imply that there 
exist positive eigenvalue (λ*

1 > 0) of JX*
0
. Hence X*

0 is unstable whenever 
R 0 > 1. □ 

Theorem 0.5. The disease free equilibrium 
(
DFE)X*

0 =
(

a
μ, 0,0, 0,0, 0,0

)

of the equation system (2) is globally asymptotically stable (GAS) if R 0 < 1 
and unstable if R 0 > 1. 

Rewriting the equation system (2) as 
⎧
⎪⎪⎨

⎪⎪⎩

dX
dt

= F
(

X, V
)

dV
dt

= G
(

X, V
)

, with G
(

X, 0
)

= 0
(4)  

where X = (s, r) ∈ [0, 1]2 (proportions of uninfected individuals), V =

(e, i1, i2, i3) ∈ [0, 1]4 (proportions of infected individuals) and X*
0 =

(
a
μ,

0, 0, 0, 0, 0, 0.
)

is the DFE of the system (2). The global stability of the 

DFE is guaranteed if those two conditions are satisfied:  

1. For dX
dt = F

(
X, 0

)
,X* is globally asymptotically stable,  

2. G(X,V) = AV − Ĝ(X,V); Ĝ(X,V)⩾0 for (X,V) ∈ [0, 1]6 where A =

DVG(X*,0) is a metzler matrix and [0, 1]6 is the positive invariant set 
with respect to the model (2). 

Following [30] we check the conditions mentioned above: 

dx
dt

= F
(

X, I
)

=

{
a − βsi1 − βsi2 − βsi3 − μs
γ1i1 + γ2i2 + γ3i3 − μr  

dI
dt

= G

⎛

⎜
⎜
⎜
⎜
⎝

X, I

⎞

⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βsi1 − βsi2 − βsi3 − (ρ1 + ρ2 + ρ3 + μ)e
ρ1e − (μ + γ1 + d1)i1
ρ2e − (μ + γ2 + d2)i2
ρ3e − (μ + γ3 + d3)i3  

G
(

X, 0
)
= 0,U0 =

(
X☆

0

)
=
(a

μ, 0, 0, 0, 0, 0, 0
)
.

The conditions (H1) and (H2) below must be met in order to guar-
antee the local asymptotic stability. 

(H1) for dx
dt = F

(
X, 0

)
,X*

0 is global asymptotically stable (GAS). 

(H2) G(X, I) = AI − Ĝ(X, I); Ĝ(X, I)⩾0 for (X, I) ∈ Ω where A =

DIG(X☆,0) is an M-matrix, the off diagonal element of A are non nega-
tive and Ω is the region where the model makes biological sense. 

For the equation system (2), we have: 

F

⎛

⎝X, 0

⎞

⎠ =

⎛

⎝
a − μs
0

⎞

⎠,

and 

G

⎛

⎜
⎜
⎝X, I

⎞

⎟
⎟
⎠ =

⎧
⎪⎪⎨

⎪⎪⎩

βsi1 − βsi2 − βsi3 − (ρ1 + ρ2 + ρ3 + μ)e
ρ1e − (μ + γ1 + d1)i1
ρ2e − (μ + γ2 + d2)i2
ρ3e − (μ + γ3 + d3)i3   

Then,   

DIG
(
x*, 0

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (ρ1 + ρ2 + ρ3 + μ) aβ
μ

aβ
μ

aβ
μ

ρ1 − (μ + γ1 + d1) 0 0

ρ2 0 − (μ + ρ2 + d2) 0

ρ3 0 0 − (μ + ρ3 + d3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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We deduce   

AI =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(

ρ1 + ρ2 + ρ3 + μ
)

e +
aβ
μ +

aβ
μ +

aβ
μ

ρ1e − (μ + γ1 + d1)i1

ρ2e − (μ + ρ2 + d2)i2

ρ3e − (μ + ρ3 + d3)i3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and 

G̃

⎛

⎝X, I

⎞

⎠ =

⎛

⎝
β
(

i1 + i2 + i3

)(a
μ − s

)

0

⎞

⎠

Clearly, G̃(X, I)⩾0 whenever the state variables are inside Ω as 
(

a
μ − s

)〉
0. 

Also, it is clear that X*
0 =

(
a
μ,0, 0,0, 0,0, 0

)
is a globally asymptoti-

cally stable equilibrium of the system dX
dt = F(X,0

)

. 

Hence, the Theorem 0.5 holds. 

Existence and co-existing equilibrium point 

In this subsection, the existence and the local stability of the co- 

existing equilibrium point of the model (2) are established. 
Let X* = (s*, e*, i*1, i

*
2, i

*
3, r*, d*) represents any arbitrary equilibrium 

point (EP) of the model system (2). By solving this equation at the steady 
state, we have: 

s* = a
μ

[
1

(R 0 − 1)+β

]

e* =

(
a

ρ1+ρ2+ρ3+μ

)[

1 − 1
R 0

]

i*1 =
aρ1

(ρ1+ρ2+ρ3+μ)(μ+γ1+d1)

[

1 − 1
R 0

]

i*2 =
aρ2

(ρ2+ρ2+ρ3+μ)(μ+γ2+d2)

[

1 − 1
R 0

]

i*3 =
aρ3

(ρ1+ρ2+ρ3+μ)(μ+γ3+d3)

[

1 − 1
R 0

]

r* = a
μ(ρ1+ρ2+ρ3+μ)

[

1 − 1
R 0

]{
γ1ρ1

μ+γ1+d1
+

γ2ρ2
μ+γ2+d2

+
γ3ρ3

μ+γ3+d3

}

d* = 1 − (s* + e* + i*1 + i*2 + i*3 + r*)

It is clear that the model system (2) has a co-existing equilibrium 
point (CEP) whenever R 0 > 1 and no positive CEP whenever R 0 < 1. 
This excludes the possibility of the existence of equilibrium other than 
desease free equilibrium (DFE) for R 0 < 1. 

Moreover, we can show that the DFE X*
0 of the model system (2) is 

globally asymptotically stable (GAS) whenever R 0 < 1. 
Based on the above discussion, the model system (2) has a co-existing 

equilibrium point, given by X*, whenever R 0 > 1 and has no CEP for 
R 0⩽1. 

Theorem 0.6. The co-existing equilibrium point X* is locally asymptoti-
cally stable if R 0 > 1 

Proof. Local stability of the co-existing equilibrium point. The Jaco-
bian matrix of the system (2) JX*

0 
at DFE is given by:  

By using the central manifold theorem [30] to determine the local sta-
bility of the co-existing equilibrium, we select β as the bifurcation 
parameter and gives critical value of β at R 0 = 1 as: 

β* =
μ(ρ1+ρ2+ρ3+μ)(μ+γ1+d1)(μ+γ2+d2)(μ+γ3+d3)

a
[
ρ1

(
μ+γ2+d2

)
Ã +ρ2

(
μ+γ1+d1

)
Ã +ρ3

(
μ+γ1+d1

)(
μ+γ2+d2

)]

where Ã = μ + γ3 + d3 

The Jacobian of the system (2) at β = β*, denoted by JX*
0
|β=β* has a 

right eigenvector (corresponding to the zero eigenvalue) given by ω =

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (ρ1 + ρ2 + ρ3 + μ) aβ
μ

aβ
μ

aβ
μ

ρ1 − (μ + γ1 + d1) 0 0

ρ2 0 − (μ + ρ2 + d2) 0

ρ3 0 0 − (μ + ρ3 + d3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

JX*
0
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− μ 0
− aβ

μ
− aβ

μ
− aβ

μ 0

0 − ρ1 − ρ2 − ρ3 − μ aβ
μ

aβ
μ

aβ
μ 0

0 ρ1 − μ − γ1 − d1 0 0 0

0 ρ2 0 − μ − γ2 − d2 0 0

0 ρ3 0 0 − μ − γ3 − d3 0

0 0 γ1 γ2 γ3 − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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(ω1,ω2,ω3,ω4,ω5,ω6)
T, where 

ω1 =
− (ρ1 + ρ2 + ρ3 + μ)

μ ω2  

ω2 = ω2 > 0  

ω3 =

(
ρ1

μ + γ1 + d1

)

ω2; ω4 =

(
ρ2

μ + γ2 + d2

)

ω2; ω5 =

(
ρ3

μ + γ3 + d3

)

ω2  

ω6 =
1
μ

[
γ1ρ1

μ + γ1 + d1
+

γ2ρ2

μ + γ2 + d2
+

γ3ρ3

μ + γ3 + d3

]

ω2  

Similarly, from JX*
0
|β=β* , we obtain a left eigenvector v =

(v1, v2, v3, v4, v5, v6)
T (corresponding to the zero eigenvalue), where 

v1 = 0; v2 = v2 > 0; v3 =
aβ*

μ(μ+γ1+d1)
v2; v4 =

aβ*

μ(μ+γ2+d2)
v2; v5 =

aβ*

μ(μ+γ3+d3)
v2; v6 = 0 

Using the notations s = x1 ; e = x2 ; i1 = x3 ; i2 = x4 ; i3 = x5 ; r = x6 
et d = x7 

Hence, we have 

ã =
∑7

k,i,j=1
vkωiωj

∂2fk
(
0, 0
)

∂xi∂xj
andb̃ =

∑7

k,i=1
vkωi

∂2fk
(
0, 0
)

∂xi∂β  

By replacing values of all the second-order derivatives measured at 
disease free equilibrium and β = β* we obtain: 

f1 = a − βx1x3 − βx1x4 − βx1x5 − μx1 
f2 = βx1x3 + βx1x4 + βx1x5 − (ρ1 + ρ2 + ρ3 + μ)x2 

f3 = ρ1x2 − (μ + γ1 + d1)x3 
f4 = ρ2x2 − (μ + γ2 + d2)x4 
f5 = ρ3x2 − (μ + γ3 + d3)x5 

f6 = γ1x3 − γ2x4 + γ3x5 − μx6 
f7 = d1x3 − d2x4 + d3x5 

ã = (v1ω1ω3 + v1ω1ω4 + v1ω1ω5)( − β) + (v2ω1ω3 + v2ω1ω4 +

v2ω1ω5)( − β)

b̃ = v1ω1( − x3 − x4 − x5)|(0,0) + v1ω3( − x1)|(0,0) + v1ω4( − x1)|(0,0) +

+ v1ω5( − x1)|(0,0)

ã = (v2ω1ω3 + v2ω1ω4 + v2ω1ω5)(β*)

b̃ = v2ω1(x3 + x4 + x5)|(X*
0 ,0)

+ x1(v2ω3 + v2ω4 + v2ω5)|(X*
0 ,0)

Then 

ã =
− v2

a
[(ρ1 + ρ2 + ρ3 + μ)ω2]

2
< 0  

and 

b̃ =
a
μv2

(
ρ1

μ + ω1 + d1
+

ρ2

μ + ω2 + d2
+

ρ3

μ + ω3 + d3

)

ω2 > 0  

As ̃a < 0 and ̃b > 0 at β = β*, thus applying the Remark 1 of the Theorem 
4.1 presented in [30], a transcritical bifurcation occurs at R 0 = 1. 

Remark 0.7. The stability of DFE means that solutions with initial 
values close to X*

0 remain close to the equilibrium and approach the 
equilibrium as t⟶∞. Local stability of an equilibrium point means that 
if you put the system somewhere nearby the point then it will move itself 
to the equilibrium point in some time. Global stability means that the 

system will come to the equilibrium point from any possible starting 
point (i.e, there is no ”nearby”condition). If the quantity R 0, that is the 
average number of the secondary infections produced by one infected 
individual during the entire course of infection in a completely suscep-
tible population, is greater than one, the epidemiological interpretation 
indicates that COVID-19 may keep persistent in the population, that is 
the disease-free equilibrium is unstable and there is a co-existing equi-
librium point, given by X*, that is (locally) asymptotically stable. The-
orem 0.6 confirms the persistence of the disease when R 0 > 1. 

Elasticity of the basic reproduction number R 0 with respect to the model 
parameters 

Let K be a variable that depends on parameters ϖ1,ϖ2,ϖ3,…,ϖn, 
the sensitivity index S K

ϖi 
of the variable K with respect to the param-

eter ϖi is given by: 

S
K

ϖi
=

∂K

∂ϖi

ϖi

K
(5) 

The sensitivity index measures the relative change in a state variable 
K , which results from a relative change in the parameter ϖi. Given the 
explicit formula of the basic reproduction number (R 0), we derive the 
analytical expressions to obtain the sensitivity of this R 0. Values of the 
sensitivity indices of R 0 (eq. (3)) compared to the parameters system 
(Table 1) are presented in Table 2. 

The basic reproduction number is more sensitive to the parameter 
with the highest elasticity index value (a, β and ρ2) and the least sensi-
tive to the parameter with the lowest elasticity index value (other 
parameter). 

Optimal Control 

Description and settings 

In this section, we discuss some control’s techniques that consist in 
limiting contact between infected and susceptible individuals, as well as 
the screening and treatment of individuals infected with COVID-19. 
Because of the costs due to the application of these measures, the 
problem is presented as that of minimizing this cost during the whole 
time that these measures are applied. We use Pontryagin’s Maximum 
Principle [16,31] to determine the explicit analytical expression of this 
control. Considering model (1), we define the following control 
measures:  

1. The control noted ξ1, modeling all efforts to prevent the transmission 
of infection between individuals in the population. It takes into ac-
count the different strategies used to reduce the number of contacts 
between susceptible and infected individuals. These include efforts 
to isolate, quarantine patients under treatment, the wearing of masks 
and any strategy to avoid further contamination due to direct con-
tact. The action of this control is limited in the range [0; T].  

2. The control ξ2 modeling all treatment efforts for individuals who are 
COVID-19 positive in the range [0; T]. 

Control functions ξ1(t) and ξ2(t) are bounded, Lebesgue integrable 
functions defined in [0,1]. If the value of the control function ξ1 is close 
to the value 1, in this case the contacts between susceptible and infected 
are low and in this case there are very few cases of transmission of the 

Table 2 
Values of the sensitivity indices of R 0 compared to the parameters system.  

Parameters a β  ρ2  ρ3  ρ1  γ1  γ2  d3  d2  d1  γ3  

Val. 0.304  0.3  0.38  0.048  0.575  0.025  0.0125  0.20  0.0005  0.0001  0.00625  
Sens. ind. 1 1 0.169  − 0.04  0.034  − 0.0146  − 0.003  − 0.003  − 0.0003  − 0.00006  − 0.0001   
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disease. If the value of the control function ξ2 is close to the value 1, in 
this case the efforts to treat the infected are at their maximum. We will 
consider the case where the value of the baseline reproduction rate 
R0 > 1, so we are not in the stability zone of DFE and that is necessary to 
apply the control measures in order to limit the transmission of COVID- 
19. Based on conditions depicted above, the optimal control problem 
can be formulated as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = a − β(1 − ξ1)(i1 + i2 + i3)s − μs
ė = β(1 − ξ1)(i1 + i2 + i3)s − (μ + ρ1 + ρ2 + ρ3)e
i1 = ρ1e −

(
μ + γ1 + γ*

1ξ2 + d1
)
e1

i2 = ρ2e −
(
μ + γ2 + γ*

2ξ2 + d2
)
e2

i3 = ρ3e −
(
μ + γ3 + γ*

3ξ2 + d3
)
e3

ṙ = γ1i1 + γ2i2 + γ3i3 − μr
ḋ = d1e1 + d2e2 + d3e3

(6)  

where γ*
1, γ*

2, γ*
3 are per-capita treatment rates for infectious individuals 

from group 1,2 and 3 respectively and then 
(
γi + γ*

i ξ2
)
give the propor-

tion of individuals recovery for i = 1,2,3. On the other hand, if ξ1 = 1, 
then the number of infectious-susceptible contacts is zero and if ξ1 = 0, 
the infection rate is maximum and equal to β. If ξ2 = 1, then γ*

i , i = 1, 2,
3 gives the proportion of actual treatment for infected of i group and γ*

i ξ2 
gives the proportion of humans cured with treatment for i = 1,2,3. If 
ξ2 = 0, it’s the case where there is no treatment. 

Theorem 0.8. Ω × Γ = [0, 1] is positively invariant for the system Eq. (6). 

Proof. Considering the Gronwall inequality, given that all the vari-
ables of this system are positive, we have: 

ds
dt⩽a − β

(
i2 + i2 + i3

)
s − μs 

e
dt⩽β

(
i2 + i2 + i3

)
s −
(
μ + ρ1 + ρ2 + ρ3

)
e 

di1
dt ⩽ρ1e −

(
μ + γ1 + d1

)
e1 

di2
dt ⩽ρ2e −

(
μ + γ2 + d1

)
e2 

di3
dt ⩽ρ3e −

(
μ + γ3 + d1

)
e3 

ṙ⩽γ1i1 + γ2i2 + γ3i3 

ḋ⩽γ1i1 + γ2i2 + γ3i3 

Note that the right-hand side member of this inequation system repre-
sents model (1) of the COVID-19 transmission without control. Knowing 
that the solution of this system (1) is defined in Ω. Thus, applying the 
Gronwall inequality, we deduce that the solutions of the model system 
(6) are bounded as ξi ∈ [0, 1]∀i ∈ {1,2}. 

To the system (2) associate the fonction J shown in (7) to obtain the 
optimal control problem. 

J
(

ξ1, ξ2

)

=

∫ T

0

[

A1i1 + A2i2 + A3i3 +
B1

2
ξ2

1 +
B2

2
ξ2

2

]

dt (7)  

Where A1,A2 and A3 represent the costs of taking care of infectious in-
dividual type i1, i2 and i3 respectively. The constants B1 is positive and 
correspond to the effort used to regulate the contact between individuals 
in the population and B2 is positive and correspond to the effort used to 
treat infectious individuals in the population. 

As given in the litterature, the cost function is assured to be a 
quadratic function is a natural way that allows the analogy with the 
expended energy for all those dimesions. The objective is to limit the 
spread of the disease by reducing the number of contact between in-

fectious and susceptible individuals, and treating infectious cases. We 
then look of the control terms ξ1 and ξ2 that minimize the cost: 

J*
(

ξ1, ξ2

)
= min

{
J
(

ξ1, ξ2

)
|ξi∈Γ

)}
whereΓ =

{
ξ*

i , ã < ξ*
i < b̃

}
fori = 1, 2  

with ξi a piecewise continuous function on [0,T]. 
The aim is not only to reduce infected individuals after a times T but 

also over [0,T] to act simultaneously on prevention (contact infectious - 
susceptible individuals). The first term of the functional J models the 
proportion of infected individuals accumulated from the initial time 
τ0 = 0 to the final time τf = T. The choice of the positive parameters A1,

A2,A3,B1 and B2 depends on the relative, subjective importance that the 
members of the technical staff give to reduce the number of individuals 
infected by applying treatment, limiting the number of contacts between 
infected and susceptible individuals according to age group. Γ is the set 
of controls ξ1 and ξ2, and a1 and b1 are constants in the interval [0, 1]. 

The optimal control problem is completely solved when the analyt-
ical expressions of ξ*

1 and ξ*
2 witch belong to Γ that minimize the func-

tional J given in (7) are determined. 

Existence of the optimal control 

In this subsection, we show the existence of an optimal control. 

Theorem 0.9. Consider the control problem associated with problems (6)– 
(7). There is a control (ξ*

1, ξ
*
2) and a corresponding solution (s*, e*, i*1, i

*
2, i

*
3)

which minimizes J(ξ*
1, ξ*

2) on Γ such that 

min
(ξ1 ,ξ2)∈Γ

J
(

ξ1, ξ2

)

= J
(

ξ*
1, ξ

*
2

)

Proof. Considering [31], we should verify that the following re-
quirements are met:  

1. The set of controls corresponding to the solutions of this problem is 
not empty;  

2. The set of controls Γ is related and closed in L2[0,T] ;  
3. The set of solutions of the state system is bounded by a linear control 

function;  
4. The integrand of the objective function (cout) is convex;  
5. The existence of non-negative constants c1, c2 and γ such that the 

integrand of the objective function is bounded by: 

c1

(⃒
⃒ξ1|

2
+
⃒
⃒ξ2|

2
)γ− 1

− c2   

We can also chech that ξ1 = ξ2 = 0 is a control in Γ and (s*, e*, i*1, i
*
2,

i*3) is a solution corresponding to control ξ1 = ξ2 = 0, so the set of all 
controls and corresponding solutions is not empty, which satisfies con-
dition 1. By definition, the range of controls is limited, which satisfies 
condition 2. The right-hand member of the state system (6) satisfies 
condition 3 because the solutions of this system are bounded. The 
integrand of functional J is clearly convex in the Γ, showing that con-
dition 4 is satisfied. Finally, there are c1, c2 > 0 and γ > 1 satisfying 

A1i1

(

t
)

+A2i2

(

t
)

+A3i3

(

t
)

+
B1

2
ξ2

1 +
B2

2
ξ2

2⩾c1

(⃒
⃒ξ1|

2
+
⃒
⃒ξ2|

2
)γ− 1

− c2,

because the states variables are bounded. We conclude that there exists 
an optimal control (ξ*

1, ξ
*
2) that minimizing the objective functional J(ξ1,

ξ2). The boundary and the fact that the boundaries are finite ensure the 
compactness required for optimal control. The considered initial con-
ditions are i1(0), i2(0) and i3(0). □ At present we have ensured the 
existence of an optimal control. To solve this problem, we can use the 
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maximum Pontryagin principle. 

Characterization of optimal central 

In this subsection, we give its characterization. 

Theorem 0.10. The optimal control which minimizes the functional J 
given in (7) under the constraints given by the system of differential Eqs. (6) 
is given by: 

ξ*
1 = max

{

a1,min
{

b1,
1

B1
[(λ2 − λ1)(i1 + i2 + i3)βs]

}}

ξ*
2 = max

{

a2,min
{

b2,
1

B2

[(
λ3γ*

1i1 + λ4γ2i2 + i2 + λ5γ*
3i3
)]
}}

Proof. Let Z = (s, e, i1, i2, i3, r, d) ∈ Ω,U = (ξ1, ξ2) ∈ Γ and T = (λ1, λ2,

λ3,…, λ7) be the adjoint variables. We define the Lagrangian (Hamilto-
nian and penalties) associated with the problem defined above: 

L

(

Z,U,T

)

=A1i1+A2i2+A3i3+
1
2
B1ξ2

1 +
1
2
B2ξ2

2

+λ1

[

a − β
(

1 − ξ1

)(

i1 + i2 + i3

)

s − μs
]

+λ2

[

β
(

1 − ξ1

)(

i1+ i2+ i3

)

s −
(

μ+ρ1+ρ2 +ρ3

)

e
]

+λ3

[

ρ1e −
(

μ+γ1 +γ*
1ξ2 +d1

)

i1

]

+λ4

[

ρ2e −
(

μ+γ2 +γ*
2ξ2 +d2

)

i2

]

+λ5

[

ρ3e −
(

μ+γ3 +γ*
3ξ2 +d3

)

i3

]

+λ6

[

γ1i1+γ2i2+γ3i3 − μr
]

+λ7

[

d1i1 +d2i2+d3i3

]

+ω1

(

ξ1 − a1

)

+ω2

(

b1 − ξ1

)

+ω3

(

ξ2 − a2

)

+ω4

(

b2 − ξ2

)

where ω1,ω2,ω3 and ω4 are penalty variables attached to control ξ1 and 
ξ2. These penalty multipliers must meet the folllowing conditions: 

ω1(ξ1 − a1) = 0; ω2(b1 − ξ1) = 0; ω3(ξ2 − a2) = 0; ω4(b2 − ξ2) = 0  

In addition, the differential equations which govern the adjoint vari-
ables are obtained by differenting the Lagrangian (as per Maximum 
Principle) 

dλ1

dt
= −

∂L

∂s
;

dλ2

dt
= −

∂L

∂e
;

dλ3

dt
= −

∂L

∂i1
;

dλ4

dt
= −

∂L

∂i2
;

dλ5

dt

= −
∂L

∂i3
;

dλ6

dt
= −

∂L

∂r
;

dλ7

dt
= −

∂L

∂d  

That gives the adjoint system below: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ1

dt
= β(1− ξ1)(i1+i2+i3)+μ− λ2β(1− ξ1)(i1+i2+i3),

dλ2

dt
= λ2(μ+ρ1+ρ2+ρ3)− λ3ρ1 − λ4ρ2 − λ5ρ3,

dλ3

dt
= A1+λ1β

(
1− ξ1

)
s− λ2β

(
1− ξ1

)
s+λ3

(
μ+γ1+γ*

1ξ2+d1
)
− λ6γ1 − λ7d1,

dλ4

dt
= A2+λ1β

(
1− ξ1

)
s− λ2β

(
1− ξ1

)
s+λ4

(
μ+γ2+γ*

2ξ2+d2
)
− λ6γ2 − λ7d2,

dλ5

dt
= A3+λ1β

(
1− ξ1

)
s− λ2β

(
1− ξ1

)
s+λ5

(
μ+γ2+γ*

3ξ2+d3
)
− λ6γ3 − λ7d3,

dλ6

dt
= λ6μ,

dλ7

dt
= 0.

For these adjoint variables, we must have λi(T) = 0,i = 1,…,7, there are 
the transversality conditions also called marriage conditions. 

The value of the optimal control can be characterized at each instant 
t ∈ [0,T] by noting that it minimizes the Lagrangian (Pontryagin’s 
Maximum Principle) and that’s at this optimal control, variables must 
satisfy the necessary condition: 

∂L

∂ϕ* = 0withϕ* =

(

ξ*
1, ξ

*
1

)

the optimal couple  

Given that: 

L =
1
2
B1ξ2

1 +
1
2
B2ξ2

2 + λ1

[

a − β
(

1 − ξ1

)(

i1 + i2 + i3

)

s − μs
]

+ λ2

[

β
(

1 − ξ1

)(

i1 + i2 + i3

)

s −
(

μ+ ρ1 + ρ2 + ρ3

)

e
]

+ λ3

[

ρ1e −
(

μ+ γ1 + γ*
1ξ2 + d1

)

i1

]

+ λ4

[

ρ2e −
(

μ+ γ2 + γ*
2ξ2 + d2

)

i2

]

+ λ5

[

ρ3e −
(

μ+ γ3 + γ*
3ξ2 + d3

)

i3

]

+ω1

(

ξ1 − a1

)

+ω2

(

b1 − ξ1

)

+ω3

(

ξ2 − a2

)

+ω4

(

b2 − ξ2

)

+

(

terms without
)

ξ1 nor ξ2  

Differentiating L with respect to ξ1 and ξ2 gives respectively: 

∂L

∂ξ1
= B1ξ1 + λ1β

(

i1 + i2 + i3

)

s − βλ2

(

i1 + i2 + i3

)

s+ω1 − ω2  

∂L

∂ξ2
= B2ξ2 + λ3ω*

1i1 − λ4ω*
2i2 − λ5ω*

3i3 +ω3 − ω4  

At (ξ*
1,ξ

*
2), we have ∂L

∂ξ1
= ∂L

∂ξ2
= 0 the equalities give: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂L

∂ξ1
= B1ξ1 + λ1β

(

i1 + i2 + i3

)

s − βλ2

(

i1 + i2 + i3

)

s + ω1 − ω2 = 0

∂L

∂ξ2
= B2ξ2 + λ3ω*

1i1 − λ4ω*
2i2 − λ5ω*

3i3 + ω3 − ω4 = 0  

Hence, we get the optimun 
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ*
1 =

1
B1

[β(i1 + i2 + i3)[λ2 − λ2]s + ω2 − ω1]

ξ*
2 =

1
B2

[
λ3γ*

1i1 + λ4γ*
2i2 + λ5γ*

3i3 + ω4 − ω3
]

For a more explicit formula for optimal contrals without ω1,ω2,ω3 and 
ω4, we use standard techniques. 

For this purpose, we consider 6 cases, with 3 cases for each optimal 
contrat:  

• Case 1: In the set {t, a1 < ξ*
1 < b1},ω1(ξ*

1 − a1) = ω2(b1 − ξ*
1) = 0⇒ 

ω1 = ω2 = 0. So the optimal control is: 

ξ*
1 =

1
B1

[(

λ2 − λ1

)

β
(

i1 + i2 + i3

)

s
]

• Case 2: In the set 
{

t, ξ*
1 = b1

}
, ξ*

1 = 1
B1
[β(λ2 − λ1

)

(i1 + i2 + i3
)

s +

ω
]

= b1 

b1 = ξ*
1 =

1
B1

[(

λ2 − λ1

)

β
(

i1 + i2 + i3

)

s
]

⩽b1withω2

(

t
)

⩾0    

• Case 3: In the set {t, ξ*
1 = a1},ω1(ξ*

1 − a1) = ω2(b1 − ξ*
1) = 0⇒0 from 

where 

a1 = ξ*
1 =

1
B1

[(

λ2 − λ1

)

β
(

i1 + i2 + i3

)

s − ω1

]

and therefore 

ξ*
1 =

1
B1

[(

λ2 − λ1

)

β
(

i1 + i2 + i3

)

s
]

⩾a1withω3

(

t
)

⩾0    

• Case 4: In the set {t, a1 < ξ*
2 < b1},ω3(ξ*

2 − a2) = ω4(b2 − ξ*
2) = 0⇒ 

ω3 = ω4 = 0So the optimal control is 

ξ*
2 =

1
B2

[

λ3γ*
1 + λ4γ*

2i2 + λ5γ*
3i3

]

• Case 5: In the set {t,ξ*
2 = b2},ξ*

3(ξ
*
2 − a2) = ω4(b2 − ξ*

2) = 0⇒ω3 = 0, 
hence 

b2 = ξ*
2 =

1
B2

[

λ3ω*
1i1 + λ4ω*

2i2 + λ5ω*
3i3 +ω4

]

As ω⩾0, so the optimal control is 

ξ*
2 =

1
B2

[

λ3ω*
1i1 + λ4ω*

2i2 + λ5ω*
3i3

]

⩽b2    

• Case 6 In the set {t,ξ*
2 = a2},ω3(ξ*

2 − a2) = ω4(b2 − ξ*
2) = 0⇒ω4 = 0, 

hence a2 = ξ*
2 = 4 1

B2

[
λ3ω*

1i1 +λ4γ*
2i2 +λ5γ*

3i3 − ω3

]

As ω⩾0, so the 

optimal control is ξ*
2 = 1

B2

[
λ3γ*

1i1 + λ4ω*
2i2 + λ5γ*

3i3
]

⩾a2with these 

cases, we rewrite the expression of the first and second controls: 

ξ*
1 = max

{

a1,min
{

b1,
s

B1
[(λ2 − λ1)β(i1 + i2 + i3)]

}}

ξ*
2 = max

{

a1,min
{

b2,
s

B2

[
λ3γ*

1i1 + λ4γ*
2i2 + λ5γ*

3i3
]
}}

This completes the proof of the theorem. 

Numerical simulations 

In this section we present simulations that have been carried out. 
Some curves of the dynamics of the disease according to different values 
of the basic reproduction number are displayed. The first group of plots 
shows the situation of R 0 < 1 and the second presents the situation of 
R 0 > 1 with and without control. Others plots are deveted to the dy-
namics of the global stability of DFE and the co-existing equilibrium for 
differents plans. 

Fig. 2 shows that with R 0 < 1, the disease is eliminated in the 
Congolese population. Figs. 3(a) and 3(b) show the evolution of infected 
individuals when R 0 > 1 without any control measures. Here results 
show that there is a co-existing equilibrium point (CEP), this means that 
the disease will persist in the population if control measures are not 
applied. 

Figs. 4–7 show that the application of control measures on the 
pandemic have an impact on the evolution of the disease towards a 
possible extinction in the future. 

Now we present the graphs showing the global stability of the 
equilibrium points of DFE and the co-existing equilibrium respectively 
in Figs. 8 and 9. With baseline parameter values presented in Table 1 and 
considering that recrutment is defined by a* = aN , with N the total 
population, the coordonate of X*

0 is given by: X*
0 = (416666.67,0,0,0,0,

0,0). 
The co-existing equilibrium is defined by X* = (s*,e*, i*1, i

*
2, i

*
3, r*,d*), 

with baseline parameter values presented in Table 1 is given by: 
X* = (0.46, 7849.28, 48725.81, 165029.99, 1671.17, 178076.59,

401352.32). 

Discussion of results and conclusion 

General discussion 

The baseline situation reflects the evolution of the pandemic at the 
beginning of its installation, without optimal control. The progression is 
rapid due to the transmission, initially less pronounced with a daily 
increase until it reaches its peak. We note that, the co-existing equilib-
rium point for the infectional compartment is stable as shown in Figs. 2 

Fig. 2. Evolution of infected individuals I(t) for several values of R 0 (R 0 < 1) 
with different values of β in (0.10, 0.22, 0.32, 0.43). 
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Fig. 3. Evolution infectious individuals and deaths, initial values S0 = 80.106 and I1(0) = I2(0) = I3(0) = 1 with baseline parameter values given in Table 1 and 
R 0 = 3.054. In (a) the evolution of I1, I2, I3 and D is presented, in (b) the evolution of I = I1 +I2 +I3 +R and D is presented. 

Fig. 4. Shows the evolution of the system when control measures are applied into the situation presented in Figs. 3(a) and 3(b).  

Fig. 5. Evolution of I(t) for several values of R 0 and use of basic parameters (Table 1) (a) without control (b) with control by applying the protocol of decreasing the 
dead rate due to COVID-19 and inceasing the recovered rate. 
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and 3. The numerical simulation carried out on a initial population of 
susceptible S0 = 80 × 106 we obtain a maximum incidence of 
161139[14 × 104,18 × 104] cases. The total number of patients that can 
be registered calculated is estimated at 6419 cases at the 3rd month, 
13906 cases at the 6th month and 10511 cases at the 12th month. The 
calculated R 0 is 3.054. 

To control the pandemic, a protocol is applied from the end of the 
second month (60 days) since the beginning of the disease in DRC. The 
effect of this control is to reduce, at each time step (day), the death rates 
di(i = 1,2, 3) of the assumed values 0.000009 for the forms I1 and I2, and 
0.0001 for the form I3, representing a management effort for all cate-
gories of people with a special focus on individuals of type I3. At the 
same time, an increase from the assumed values 0.00050,0.00050 and 
0.0050 to the recovered rates γi(i = 1,2,3), respectively for the type I1,
I2, and I3, representing the action of reduction in transmission, improved 
screening, treatment for individuals diagnosed positive to COVID-19 
and the implementation of barrier measures limiting contamination 
for undiagnosed individuals. The results of these control measures show 
that a co-existing disease-free equilibrium will be observed after 1.5 
years since the beginning of the pandemic. Fig. 4 illustrate this control 
with in (a) individuals I1, I2 and I3 are shown separately and in (b) 

surviving individuals are represented by the sum of I1, I2, I3 and R. Note 
that the optimal control here is represented in an empirically imputed 
incremental change. Taking the control measures into account, we have 
a decrease in the basic reproduction number which leads to a disease- 
free equilibrium earlier with a reduction in the number of deaths. As 
shown in Fig. 6, if control measures are not taken into account, the 
number of dead individuals due to COVID-19 D(t) increases exponen-
tially, but when control is applied, stability of D(t) is observed later. 
Based on the results obtained in Figs. 7, if control measures are not taken 
into account, the number of recovered individuals remains high due to 
the large number of infected individuals, whereas if control measures 
are taken into account, R(t) individuals drop to the disease-free 
equilibrium. 

Based on the results presented in Figs. 8 and 9, it appears that the 
policy of the DRC response team is more focused on reducing the 
number of deaths and stabilisation of infected individuals. We find that 
in DRC younger individuals are the most infected with COVID-19 and 
older (old) individuals die more from COVID-19 infection compared to 
other categories, this is justified by the fact that the elderly often have 
co-morbidities and the young do not fully comply with the barrier 
measures as requested by the government. 

Fig. 6. Evolution of D(t) for several values of R 0 and use of basic parameter (Table 1) (a) without control (b) with control by applying the protocol of decreasing the 
dead rate due to COVID-19 and inceasing the recovered rate. 

Fig. 7. Evolution of R(t) for several values of R 0 and use of basic parameter (Table 1) (a) without control (b) with control by applying the protocol of decreasing the 
dead rate due to COVID-19 and inceasing the recovered rate. 
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In DRC, the various reports of the response team give us the number 
of new cases reported on the basis of the tests carried out and to date less 
than 500/ day. Knowing that the health coverage and the screening 
capacity for the detection of COVID-19 in DRC is estimated at less than 
20%, in addition to this are people escaping the official health care 
system (recourse to traditional medicine and in private structures, or at 
home with self-medication, …), it is clear that the number of reported 
cases presented by the response team is far below the reality in the 
country. 

Concluding remarks 

In this paper we propose the mathematical modeling and the dy-
namics of the new coronavirus (COVID-19) in which infectious in-
dividuals are divided into three subgroups representing three forms of 
infection in the population of the DRC. A rigorous mathematical analysis 

of the proposed model was carried out. The sensitivity analysis of R 0 
with respect to the parameters of the system showed that in the order 
presented in Table 2, the parameters that most influence R 0 are: a, β, ρ2,

ρ3, ρ3 and γ1. 
Numerical simulations show that if control measures are not taken 

into account, COVID-19 will settle in the Congolese population. On the 
other hand, if the measures are taken into account, the pandemic will 
extinct in the future. Based on the results of our research, the informa-
tion announced by the DRC health response team on the number of new 
cases per day is very low compared to reality. In fact, the team 
constantly gives the numbers of cases detected in relation to the avail-
able screening kits, which constitutes a capacity of less than 20% of 
screening capacity. 

The model proposed in this paper, its mathematical analysis and the 
results obtained from the simulations are essential for the decision- 
makers in countries affected by COVID-19 in general and those of the 

Fig. 8. (a), (b) and (c) display the dynamics of the global stability of DFE, noted by X* respectively differents plans (i1, s), (i2, e) and (i3, r, d).  
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DRC in particular in the sense that it gives a clear understanding of the 
spread of COVID-19 in the population and proposes the optimal control 
of the pandemic for its future extinction in the population. 

As Africa in general and DRC in particular have a young population 
compared to Europe, and as the screening rate is low, the number of 
cases reported by the government remains low.The results of this paper 
therefore argue that many infected people assimulate their COVID-19 
infection with other flu infection and treat themselves at home. This 
justifies the high prevalence obtained in our study compared to the 
values reported by the DRC response team. The government should 
consider the increasing of the capacity of COVID-19 screening and 
implement the control measures proposed here to significantly reduce 
the prevalence of this pandemic. 
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