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Abstract: In this paper, we explore two modeling approaches to understanding the dynamics of
infectious diseases in the population: equation-based modeling (EBM) and agent-based modeling
(ABM). To achieve this, a comparative study of these approaches was conducted and we highlighted
their advantages and disadvantages. Two case studies on the spread of the COVID-19 pandemic
were carried out using both approaches. The results obtained show that differential equation-based
models are faster but still simplistic, while agent-based models require more machine capabilities but
are more realistic and very close to biology. Based on these outputs, it seems that the coupling of both
approaches could be an interesting compromise.

Keywords: COVID-19; basic reproduction number; virus spread; modeling simulation; agent-based
modeling; equation-based modeling
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1. Introduction

COVID-19 (SARS-CoV-2) is a devastating disease that has spread around the world
since the last quarter of 2019. Although the exact origin of the virus is still unknown,
the first officially recognized outbreak was reported in Wuhan, China in November 2019.
This disease is a deadly pandemic that is transmitted from an animal (host) to another
one (intermediate host) or from an intermediate host to humans [1]. Human-to-human
transmission occurs mainly through respiratory droplets and aerosolization when a person
breathes in the same enclosed space or in close proximity to other people. Transmission
increases in poorly ventilated indoors and when the infected person coughs, sneezes, talks,
or sings [2,3]. A sudden loss of smell (anosmia), whether or not associated with a loss of
taste (ageusia), is a relatively frequent manifestation and the revealing origin of SARS-CoV-
2 infection. Other common symptoms may be fever, cough, the difficulty of breathing,
chills, muscle aches or sore throat. Symptoms may occur from the second day after the
contamination to the 14th one. The novel coronavirus might cause a moderate or severe
form of infection. The severe form involves complications such as pneumonia or death
of the infected person. A specific category known as “highly comorbid individuals” is
considered as the class of individuals with high risk of having the severe form of COVID-19.
This category concerns people of all ages with underlying health problems, especially if
those problems are poorly controlled, including people with chronic lung disease [4] or
moderate to severe asthma, heart disease, weakened immune system, severe obesity (body
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mass index of 40 or more), diabetes, chronic kidney disease, especially with dialysis, and
liver disease.

The spread of COVID-19 is a very complex phenomenon that draws the attention of
many researchers. To overcome the pandemic of COVID-19, it is advisable to study and
model it as a complex system that requires a solution in the form of modeling simulation
for its understanding. In the literature, complex systems have been mainly studied by
means of equation-based models (EBM) and agent-based models (ABM).

The first point of view (EBM) is based on mathematical modeling. In this direction,
ref [5] presented a general model of epidemic spread to understand the timing of trans-
mission. In [6], the authors studied, with the aid of mathematical models, the infection
force of the hepatitis C virus among drug users in France. In [7], a mathematical model of
the COVID-19 outbreak with three forms of infections (benign, respiratory, and reanima-
tion forms) is proposed. In [8], complex systems, such as the spread of tuberculosis, are
solved by means of hybrid stochastic modeling and computer simulations. In their study,
ref [9] established a model of differential equations with piecewise constant arguments
in order to explore the spread of COVID-19. A formulation of a stochastic susceptible-
infected-recovered model and the determination of sufficient conditions for extinction and
persistence of COVID-19 are carried out in [10].

The second point of view (ABM) is based on artificial intelligence. Many researchers
have dealt with such problems using ABM. For example, in [11] an agent-based simulation
is proposed to understand the tuberculosis timing of transmission. In [12], the authors
proposed a study wherein the spread of tuberculosis is controlled by means of a stochastic
agent-based model and simulation.

Obviously, both EBM and ABM have strengths and weaknesses, and it would be
favorable to try to choose one approach over the other. In this paper, we compare the
above-mentioned modeling approaches and apply them to the dynamics of the COVID-19
pandemic. Based on the results of our experiments, we explain the reasons for choosing
one approach over another in terms of computing time and memory requirements.

This paper is structured as follows: First, we introduce some key concepts (see
Section 2), then we describe the differences between ABM and EBM (see Section 3). Third,
we apply these two approaches in case studies and discuss the obtained results with
numerical simulations (see Sections 4–6), and finally, we conclude the study (see Section 7).

2. Some Key Concepts

This section explains some key concepts that will be useful in the rest of the paper.

2.1. Model

A model is a simplified representation of reality, a formal representation of a complex
problem, a process, or an idea. A model is therefore never an exact reproduction, but
rather a clarified, purified image. In the physical sciences, a model is a simplified material
representation of a problematic situation, generally on a reduced scale. This model makes
it possible to simulate the physical conditions involved and to predict the particular
constraints of the situation [5].

2.2. Modeling Simulation

Modeling is simply the action of designing a model [8]. Simulation is defined in [13]
as the process of experimenting with a real system model and carrying out experiments on
the basis of this model in order to understand the system behavior. Modeling simulation
is a technique allowing the simplified representation of a complex reality and the experi-
mentation of the system by test parameters [5]. Modeling consists of both identifying and
formulating certain problems by building models and seeking to solve these problems by
reasoning through simulations. Thus, modeling refers to the artificial representation of a
real-world problem.
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2.3. Complex System

A system is said to be complex when it is formed of a significant number of differ-
entiated autonomous components which interact with each other in a non-trivial way [8].
The question of modeling complex systems is currently attracting many researchers. This
is due to many problems that arise today through the globalization of the economy, new
technologies, urbanization, youth delinquency, diseases spread in the population, and
others. These problems are extremely complex. Understanding these problems requires the
application of effective modeling and simulation approaches.

3. Equation-Based Modeling vs. Agent-Based Modeling
3.1. The Spread of Epidemics as a Complex System

The spread of an epidemic within a population is a purely dynamic phenomenon:
the numbers of healthy and sick individuals evolve according to the time constraint,
depending on the time during which this agent changes from an infected individual to a
lacking consistent immunity individual, the number of people with whom the agent is in
contact, and the time spent with them [14].

3.2. Equation-Based Model (EBM)

A complex system can be studied using differential equations for modeling and the
numerical resolution of these equations will determine its behavior. In general, mathemat-
ical models are considered deterministic and population models. Conceptually, several
mathematical models exist. We can mention SI, SIS, SIR, SEIR, SEIRS, etc. The mathematical
modeling approach has the particularity of providing an analysis of purely mathematical
characteristics of the model, such as the positivity and uniqueness of the solution, the
equilibrium points (endemic equilibrium: EE, and disease-free equilibrium: DFE), the
stability of the equilibrium points, but also, and very essentially, the R0 (the number of
basic reproduction).

3.3. Agent-Based Model (ABM)

Agent-based modeling is essentially based on a multi-agent system (MAS) from artifi-
cial intelligence. These models are as stochastic as an individual. These latter approaches
are interesting because they allow us to describe each agent’s behavior by means of an
algorithm [14]. The system is more precise because it allows considering an individual
level and a geographical representation of the interacting entities. Nowadays, biologists,
mathematicians, and computer scientists work together in order to develop high-tech tools
to simulate models for infectious diseases’ spread. Tests are realized to prove these models’
foundations. Further, these tools are based on several modeling approaches including
the multi-agent approach consisting of modeling simulations centered on the individual,
namely the study of interactions between individuals and their environment. Agent-
based modeling is very realistic and essentially contains features covering: stochasticity,
autonomy, feedback, and heterogeneity [15].

3.4. Comparison Study

As argued by [16–18], mathematical models are the most suited for modeling high-
level systems behavior in large populations. However, it is not easy to accurately denote
individuals’ behavior at a microscopic level including interactions between these individu-
als and adaptations over time by means of these models. ABMs, therefore, complement
and extend other approaches by integrating network dynamics. The latter models were
developed during the 2nd century in information processing, including genetic algorithms
and automata, as results from mathematics, physics, computer science, game theory, and
other fields.

The principal advantage of equation-based modeling is that it is a formalized approach.
It is easy to understand a mathematical equation since analytical solutions can be found
or, else, numerical simulations can be run. A system of differential equations can, on
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the one hand, describe the evolution of a cell’s population or many types of interactions
between several cell populations. On the other hand, the principal benefit of multi-agent
modeling is its modularity and incrementality. A multi-agent-designed system is precise
and is more detailed than a general description including the entire population. Moreover,
multi-agent system modeling outranks the differential equation one on the fact that ABM is
more realistic than EBM. Indeed, there are many similarities between multi-agent modeling
and cell biological systems. That is to say that when multi-agent modeling is used, we
deal with a lower level of abstraction. Unfortunately, some drawbacks are still found in
this approach. It is very difficult for an agent simulation to yield an analytical model [5].
Based on the evidence provided in Table 1, we see that these two approaches can easily
complement each other.

Table 1. Brief comparison table of equation-based modeling and and agent-based modeling.

EBM ABM

Synthetic Many parameters
Mathematical resolution Important need for calculation
Formalized Non-formalized
Far from abstract biology Close to biology
Little modular and little incremental Modular and incremental
Description at the population level Description at the entity level (cell molecule)
High abstraction level Low abstraction level
Low Runtime High Runtime
Homogeneity Heterogeneity

4. Case Study 1: Equation-Based Modeling (EBM) for the Spread of COVID-19
4.1. Description of the Model and Settings

We consider a compartmental model with six (6) classes of individuals of (SEIAR)
type. Figure 1 describes the dynamics of COVID-19 outbreak.

Figure 1. EBM—transfer diagram describing the COVID-19 dynamics in the population.

Where P: the total population, S: susceptible persons, E: exposed persons, I: infected
and infectious persons, A: asymptomatic persons, R1: recovered after treatment and R2
recovered spontaneously persons. Parameters are Λ: recruitment rate, β: contact rate, σ:
transmission rate to E, ε1: recovery process with treatment (RPT) rate of I, ε2: recovery
without treatment (RWT) rate of I, λ1: recovery process with treatment (RPT) rate of A, λ2:
recovery without treatment (RWT) rate of A, µ: mortality rate by disease and δ: natural
mortality rate.
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Based on information presented in Figure 1, we obtain the ordinary differential equa-
tion system (1): 

dS
d(t) = Λ− δS− βS(I + A)

dE
d(t) = βS(I + A)− E(δ + σ + (1− σ))

dI
d(t) = σE− (δ + µ + ε1 + ε2)I

dA
d(t) = (1− σ)E− (δ + µ + λ1 + λ2)A

dR1
d(t) = ε1 I + λ1 A− δR1

dR2
d(t) = ε2 I + λ2 A− δR2

(1)

4.2. Mathematical Analysis of the Model
4.2.1. Positivity of the Solution

By adding all equations of System (1), we have:

P = S + E + I + A + R1 + R2

As we know: Ṡ, Ė, İ, Ȧ, Ṙ1, Ṙ2, we can easily find Ṗ = Ṡ + Ė + İ + Ȧ + Ṙ1 + Ṙ2.
So,

Ṗ = Λ− δP− µ(I + A).

If we consider the hypothesis that Λ = δP, recruiting is proportional to the death rate
in the population, with E = I = A = R1 = R2 ≤ 0, and by posing P = 0, we have:

dP
dt

= −µ(I + A) ≤ 0 (2)

As the previous inequality (2) is true for all values of I and A positive or zero, this
clearly shows that the solution will always be positive.

4.2.2. Existence and Uniqueness of the Solution

With Equation (2) we have: dP
dt ≤ 0, and with this expression we can find:

dP
dt = 0

So, to find the existence and uniqueness of the solution, we notice that System (1)
represents a CAUCHY problem as follows:

Ẋ(t) = F(X(t)) (3)

Whereas, for the initial condition, we have: S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, ...R2(0) =
R2(0) ≥ 0. As f is of the class C1, so locally Lipschitzian on R6

+, we deduce by the fact the
existence and the uniqueness of the maximal solution to the Cauchy problem associated
to System (1), with the initial condition: (t0, X0)εR×R6

+. Hence, the space of solutions
Ωe = {(S, E, I, A, R1, R2) ∈ R6

+, P(t) ≤ P0}.
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System (1) can be written as a matrix. First, we consider Equation (3) and obtain:

Ẋ(t) =



S(t)

E(t)

I(t)

A(t)

R1(t)

R2(t)



=



X1(t)

X2(t)

X3(t)

X4(t)

X5(t)

X6(t)



(4)

where the last matrix is the vector F . We can notice that F is the vector function of C∞

class on R6
+ described by:

F (X(t)) =



f1(x1, x2, . . . , x6)

f2(x1, x2, . . . , x6)

f3(x1, x2, . . . , x6)

f4(x1, x2, . . . , x6)

f5(x1, x2, . . . , x6)

f6(x1, x2, . . . , x6)



(5)

The Jacobian matrix of the vector function is written as follows:

J f =



−δ− β(I + A) 0 βS −βS 0 0

β(I + A) −(δ + 1) βS βS 0 0

0 σ −τ1 0 0 0

0 1− σ 0 −τ2 0 0

0 0 ε1 λ1 −δ 0

0 0 ε2 λ2 0 −δ



(6)

where τ1 = δ + µ + ε1 + ε2 and τ2 = δ + µ + λ1 + λ2.
If we only consider exposed persons (compartment E), infected and infectious persons

(compartment I), and symptomatic persons (compartment A), we obtain a reduced Jacobian
matrix defined as follows:

J f =


−(δ + 1) βS βS

σ −τ1 0

1− σ 0 −τ2

 (7)
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The determinant of this matrix is:

|J f | =

∣∣∣∣∣∣∣∣∣∣

−(δ + 1) βS βS

σ −τ1 0

1− σ 0 −τ2

∣∣∣∣∣∣∣∣∣∣
= −(δ + 1)τ1τ2 + βS((1− σ)τ1 + στ2) (8)

We finally replace X0 = (S0, 0, 0, 0, 0, 0) = (
Λ
δ

, 0, 0, 0, 0, 0) we obtain β
Λ
δ
(σ(τ2 − τ1) +

τ1).

4.2.3. Equilibrium Points of the Model

To find the balance of the system, we set: S = E = I = A = R1 = R2 = 0 considering
that S∗, E∗, I∗, A∗, R∗1 , R∗2 is the endemic balance. We have:

Λ− δS∗ − βS∗(I∗ + A∗) = 0

βS∗(I∗ + A∗)− E∗(δ + σ + (1− σ)) = 0

σE∗ − (δ + µ + ε1 + ε2)I∗ = 0

(1− σ)E∗ − (δ + µ + λ1 + λ2)A∗ = 0

ε1 I∗ + λ1 A∗ − δR∗1 = 0

ε2 I∗ + λ2 A∗ − δR∗2 = 0

(9)

By solving System (9) we obtain two possible equilibria:

1. The first is X0 = (S0, 0, 0, 0, 0, 0), which represents the disease-free equilibrium or
equilibrium without disease (DFE) with: S0 = Λ

δ
2. The second is X∗ = (S∗, E∗, I∗, A∗, R∗1 , R∗2), which represents the endemic equilibrium

(E.E). For this, we extract S∗, E∗, R∗1 , R∗2 from System (9) according to I∗, A∗, and in the
following manner: Λ− δS∗ − βS∗(I∗ + A∗) = 0

S∗ =
Λ

β(I∗ + A∗) + δ
(10)

βS∗(I∗ + A∗)− E∗(δ + σ + (1− σ)) = 0

E∗ =
βS∗(I∗ + A∗)

δ + 1
(11)

With Equations (10) and (11), we have:

E∗ =
Λβ(I∗ + A∗)

β(I∗ + A∗) + δ(δ + 1)
(12)

ε1 I∗ + λ1 A∗ − δR∗1 = 0

R∗1 =
ε1 I∗ + λ1 A∗

δ
(13)

ε2 I∗ + λ2 A∗ − δR∗2 = 0
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R∗2 =
ε2 I∗ + λ2 A∗

δ
(14)

We obtain the expressions of S∗, E∗, R∗1 , R∗2 according to I∗, A∗. In fact, the expressions
of I∗ and A∗ can be extracted from the expressions obtained previously. Therefore, the
disease-free equilibrium and the endemic equilibrium are found.

4.2.4. Basic Reproduction Number

Its determination involves the determination of the following generation matrix FV−1.
Considering only individuals from infected compartments E, I, and A, we have the follow-
ing matrices obtained from Equation (1):

F =

Sβ(I + A)
0
0


The matrix of new infections

V =

 δE
(δ + µ + ε1 + ε2)I
(δ + µ + λ1 + λ2)A


The matrix of entries into the compartments for reasons other than infection.
Therefore, the corresponding matrices, at the DFE are:

F =

0 G G
0 0 0
0 0 0

,V =

 K 0 0
−σ N 0
−H 0 Y


with: K = (δ + 1), G = Λβ

δ , N = ε1 + ε2 + δ + µ,H = 1− σ and Y = λ1 + λ2 + δ + µ.
By definitionR0 is the spectral radius of the next generation matrix, such that:

R0 = ρ(FV−1) (15)

The matrix of V−1 is given by:

V−1 =


1
K 0 0

σ
KN

1
N 0

H
KY 0 1

Y



Afterwards, we have FV−1 =


0 G G

0 0 0

0 0 0

×


1
K 0 0

σ
KN

1
N 0

H
KY 0 1

Y


Then,

FV−1 =


Z G

N
G
Y

0 0 0

0 0 0

 (16)

So, the eigenvalues of the matrix (16) are given by:

|Z , 0, 0| (17)
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with: Z = Gσ
SN + GH

SY
Hence the value ofR0 is the maximum of the eigenvalues. So, the basic reproduction

number (R0) is given by:

R0 =
Λβσ

(σ + 1)(ε1 + ε2 + µ + δ)
+

Λβ(1− σ)

(σ + 1)(λ1 + λ2 + µ + δ)
(18)

4.2.5. Stability of Equilibrium Points

According to the first theorem used in [19]: if R0 < 1, then the DFE given by X0 is
locally asymptotically stable, but ifR0 > 1, it is unstable. This leads us to a second theorem
which is still used in [19] such that: ifR0 < 1, equilibrium without disease X0 of the system
is locally asymptotically stable. If R0 > 1, then X0 is unstable. The proof of this second
theorem follows the same steps as described in [19].

The overall stability of DFE and EE are observable from computer simulations. Related
mathematical proof is not performed here.

4.2.6. Sensitivity Indices of the Basic Reproduction NumberR0 with Respect to the
Model Parameters

Let us consider Γ a variable that depends on parameters ξ1, ξ2, . . . , ξn. The sensitivity
index SΓ

ξi
of the variable Γ with respect to the parameter ξi is computed as follows:

SΓ
ξi
=

∂Γ
∂ξi
× ξi

Γ
(19)

In Table 2, we derive the explicit formula ofR0 presented in Equation (18) to obtain the
corresponding sensitivity as applied in [7,8,20]. To do so, we consider parameters shown in
Table 3.

Table 2. Formulas and values of the sensitivity indices ofR0 compared to the parameters system.

Parameters Formula ∂R0
∂ξ × ξ

R0
Values (Table 3) Sensitivity Indices

Λ 1 0.30400 1

β 1 0.30000 1

σ
σ(K1−2K2)

(σ+1)[σK1+(1−σ)K2]
0.57300 0.00000563

ε1 − σε1K1
K2[σK1+(1−σ)K2]

0.00625 −0.00253

ε2 − σε2K1
K2[σK1+(1−σ)K2]

0.01250 −0.000295

λ1 − λ1(1−σ)K2
K1[σK1+(1−σ)K2]

0.00625 0.0

λ2 − λ2(1−σ)K2
K1[σK1+(1−σ)K2]

0.02500 −0.000485

µ − σK1µ
K2[K1+(1−σ)K2]

− (1−σ)K2µ
K1[K1+(1−σ)K2]

0.00005 −0.000171

δ − σK1δ
K2[K1+(1−σ)K2]

− (1−σ)K2δ
K1[K1+(1−σ)K2]

0.00576 −0.00000148

With: K1 = λ1 + λ2 + µ + δ and K2 = ε1 + ε2 + µ + δ.
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Table 3. Parameters used for the equation-based model.

Parameters Meaning Values References

Λ Recruitment rate 0.304 [7]
β Contact rate 0.3 [7]
σ Transmission rate 0.573 [7]
ε1 RPT rate of I 0.00625 [7]
ε2 RWT rate of I 0.0125 [7]
λ1 RPT rate of A 0.00625 [7]
λ2 RWT rate of A 0.025 [7]
µ Mortality rate by disease 0.00005 [7]
δ Natural mortality rate 0.00576 [21]

5. Case Study 2: Agent-Based Modeling (ABM) for the Spread of COVID-19

For this case study, we consider autonomous agents that represent the whole popula-
tion with different statuses. S: Susceptible individuals, E: Latent or Exposed individuals,
I: Infected individuals, A: Asymptomatic individuals, R1: Recovered individuals, and
R2: Recovered spontaneously individuals. Figure 2 presents the transfer diagram of the
multi-agent model.

1

Recovered  
spontaneously 

2

5
4

3

76

Susceptible Exposed

Infected Asymptomatic

Recovered  
by treatment

Figure 2. ABM—transfer diagram describing the COVID-19 dynamics in the population.

With:

1. Exposition.
2. Visible infection.
3. Hidden infection.
4. Recovered of visible infection by treatment.
5. Recovered of hidden infection without treatment.
6. Recovered of visible infection without treatment.
7. Recovered of hidden infection by treatment.

There is a strong case for addressing the different links that may exist between different
agents. In the ABM, agents are not static either. They can undergo changes of state by
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contact or by the impulse of certain parameters. Further, this is why in this model, we
have provided particular algorithms for each agent guiding the passage from one state
to another.

Description of the Model Using ODD

To avoid any problems with the model results, we used the ODD (The Overview,
Design concepts, and Details) protocol as a consistent, logical, and readable account of the
ABM structures and dynamics [22].

1. Overview

• Objective: the interest of the model was to predict over a long period of time the
incidental effects (evolution, treatment, management, brief scientific data) of the
COVID-19 pandemic, and to understand the impact of the contact links between
individuals in a precise contamination radius (environmental configuration) of
the population.

• Entities, state variables, and scales:

– Agent or Individual: in the model we consider only one type of agent. Each
agent has state variables and characteristics.

– Environment: For a better-mixed population structural representation, we
started from an environment in the form of a 50 × 50 mesh. An environment
in which agents move randomly from one cell to another. Figure 3 shows
this environment:

Figure 3. Global illustration of the agent environment with susceptible individuals: green; exposed
individuals: yellow; infected individuals: red; asymptomatic individuals: pink; recovered individuals:
blue; recovered spontaneously (without any treatment): white.

• Process overview and scheduling: The model presents a process in discrete time
steps.
At the beginning of the simulation, all individual agents in the model are in any
state (susceptible, exposed, infectious, asymptomatic, recovered, or recovered
spontaneously). Each agent can move from one state to another according to
a probability. Figure 4 displays the output of the model simulation at a given
time t.
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Figure 4. Random distribution of agents in a 50× 50 grid environment for the discrete agent-based
model. The colored dot represents individuals with their specific status (Susceptible: green; exposed:
yellow; infected: red; asymptomatic: pink; recovered with treatment: blue; recovered without
treatment: white).

2. Design Concepts

• Basic principle: it is a propagation of the disease following a compartmen-
tal model containing six groups of individuals (susceptible, exposed, infected,
asymptomatic, spontaneously recovered, and recovered with treatment).
The idea here is that, initially, a susceptible individual comes into contact with
an infectious individual. This contact gives the agent the opportunity to become
either exposed or directly infected or asymptomatic. As a result, a newly exposed
individual could also become either infected or asymptomatic. In the process,
the infected or asymptomatic individual may either recover or succumb to the
disease. There is also a prediction of natural death, which is an irrefutable factor.

• Emerging: The emergence of the system is justified in the evolution of COVID-19
infection in the population. In fact, this emergence actually depends on several
evolutionary factors that come into play: the type of agents that are initially
infectious, other agents that come into contact with them along a contamination
radius, the duration of contact but also the frequency of contact. However, there
are some factors that surely have an impact on the readjustment of data.

• Adaptation: Algorithms are designed to make agents able to reproduce different
behaviors they observe in the environment. For example, in the mixed population
structure, if an agent is already recovered, they will adapt their behavior by
avoiding contact with infectious agents.

• Detection: As infectious agents move through the environment, they can detect
susceptible agents and recovered ones. Once recovered agents detect infectious
agents, they avoid contact with them.

• Interaction: In this model, we assume that agents in the same radius defined in
the code interact with each other and with their environment. For example, if a
patient agent is in the same radius as an infectious agent, it is possible for the
patient agent to be contaminated.

• Stochasticity: In a model, agents’ movements are random. With their specific
states, agents’ movements are stochastic. Likewise, the choice of destinations for
all agents is random. Stochasticity is also observed in COVID-19 contamination.
If a susceptible agent comes into contact with an infectious agent, there is a
certain likelihood that determines whether they are exposed, asymptomatic, or
directly infectious. Additionally, the length of time an agent remains in a state
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(susceptible, exposed, infectious, asymptomatic, spontaneously recovered, or
recovered after treatment) is chosen at random. So, in short, we are talking about
a random pathway.

• Observation: Data are collected at each model run on individual agents according
to their states (susceptible, exposed, infectious, asymptomatic, recovered with
treatment, or spontaneously).

3. Details

• Initialization: For the mixed population structure, agents are randomly placed
in cells. At the start of the simulation, the environment contains only a given
number of susceptible agents and a few infectious agents (chosen by the user).

• Sub-models:

– Timer: this sub-model manages the time in the system.
– Death: death is considered here under both aspects, either natural or by

disease also containing a drug failure. Infectious agents lose their lives with
a certain probability.

– Update of global variables: all global variables are updated at the end of
each time step. At the same time, the number and percentage of susceptible,
exposed, infected, asymptomatic, and recovered (spontaneously and after
treatment) agents are all calculated.

6. Numerical Simulations and Results
6.1. EBM: Equation-Based Model

This first simulation was performed essentially on the various parameters proposed
in [7,21]. We draw information from their setting before presenting the readjustment that
we propose for a good study and a good follow-up.

6.2. EBM: Parameters Used

Parameters used were taken from the literature. Table 3 below presents these parame-
ters, their meaning, and values.

6.2.1. EBM: Overview of the Results

• First scenario: Global dynamics
In this first experiment, we present the global dynamics of the disease as a function
of the basic reproduction number (R0). With the baseline parameters presented in
Table 3 above, we have a value R0 = 3.2004 that is close to the R0 average value
obtained in [23] based on COVID-19 data from China in early 2020.

• Second scenario: Variation of the number of infected people as a function ofR0.
We can also see the progression curve of the disease as a function of the basic repro-
ductions number (R0), to see its impact on the dynamics of the epidemic.

• Third scenario: Variation of the number of infected I as a function of the recruitment
rate (Λ).
This simulation scenario of the pandemic spread is formulated on the basis of the
recruitment profile. Considering the recruitment of more and more susceptible in-
dividuals and based on the sensitivity value of the recruitment rate parameter with
respect toR0 (see Table 2), it appears that this rate has a considerable impact on the
spread of the disease.

6.2.2. EBM: Remarks

The mathematical model based on differential equations being completely determinis-
tic, the simulation confirms the logic of theR0, which is for epidemiology and singularly
for the EBM as a relevant indicator. Considering Figure 5, we can clearly see that R0
has an impact on the general dynamics of the disease. With the value of R0 = 3.2004,
we find that the disease persists in the population over time. This is because one person
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infected with the SARS-CoV-2 coronavirus infects an average of 3.2 new individuals. As
the pandemic depends on parameter values that model it, we noticed a fast growth of the
contamination curve as a function of some parameters, such as Λ and β, which are involved
in the calculation ofR0. This is confirmed in Table 2 which shows the high sensitivity value
for these 2 parameters compared to the others. As shown in Figure 6, the larger the value
of R0, the larger the number of infected people. This proves that the value of R0 has a
considerable impact on the dynamics of the disease. Figure 7 shows the progression of
infected individuals according to different values of the recruitment rate (Λ).

Figure 5. General dynamics of the disease withR0 = 3.2004.
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Figure 7. Progression of the infected individuals according to the parameter Λ. Blue color: Λ = 0.095,
blue color: Λ = 0.104, and red color: Λ = 0.404.

6.3. ABM: Agent-Based Model
6.3.1. ABM: Parameters Used

Parameters used were taken from the literature. Table 4 below presents these parame-
ters, their meaning, and values.

Table 4. Parameters used for the agent-based model.

Parameters Meaning Values References

Λ Recruitment rate 0.304 [7]
β Contact rate 0.41 [24]
σ Transmission rate to E 0.377 [7]
ε1 RPT rate of I 0.025 [7]
ε2 RWT rate of I 0.09497 [21]
λ1 RPT rate of A 0.04990 [21]
λ2 RWT rate of A 0.083 [21]
µ Mortality rate by disease 0.03890 [25]
δ Natural mortality rate 0.0192 [7]

6.3.2. ABM: Overview of Results

• Scenario 1: Observation of the randomness of the approach.
We observe the randomness of this approach while trying to present different simu-
lations while keeping the same information, and from there we can clearly see that
contrary to the EBM model, several simulations starting from identical INPUTS can
produce quite different results. Thus, starting from the initial situation of 204 individ-
uals including 2 infected and 2 asymptomatic, we present below some executions of
the model at time t = 32, in a radius of 5, with green: susceptible, yellow: exposed,
red: infected, pink: asymptomatic, blue: RPT, white: RWT.

• Scenario 2: Observation of the results according to the radius.
In this model, which is based on a stochastic modeling paradigm, there is a very
important parameter to take into account: the “radius”. Indeed, this parameter clearly
explains the decision of social distancing promulgated by the responsible authorities.
Let us now analyze the traffic pattern in relation to the different radius values used.

6.3.3. ABM: Remarks

Based on the results obtained, we note that the disease dynamics follow a completely
stochastic behavior, where at each execution of the performed simulation, there are different
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6.3. ABM: Agent-Based Model
6.3.1. ABM: Parameters Used

Parameters used were taken from the literature. Table 4 below presents these parame-
ters, their meaning, and values.

Table 4. Parameters used for the agent-based model.

Parameters Meaning Values References

Λ Recruitment rate 0.304 [7]
β Contact rate 0.41 [24]
σ Transmission rate to E 0.377 [7]
ε1 RPT rate of I 0.025 [7]
ε2 RWT rate of I 0.09497 [21]
λ1 RPT rate of A 0.04990 [21]
λ2 RWT rate of A 0.083 [21]
µ Mortality rate by disease 0.03890 [25]
δ Natural mortality rate 0.0192 [7]

6.3.2. ABM: Overview of Results

• Scenario 1: Observation of the randomness of the approach.
We observe the randomness of this approach while trying to present different simu-
lations while keeping the same information, and from there we can clearly see that
contrary to the EBM model, several simulations starting from identical INPUTS can
produce quite different results. Thus, starting from the initial situation of 204 individ-
uals including 2 infected and 2 asymptomatic, we present below some executions of
the model at time t = 32, in a radius of 5, with green: susceptible, yellow: exposed,
red: infected, pink: asymptomatic, blue: RPT, white: RWT.

• Scenario 2: Observation of the results according to the radius.
In this model, which is based on a stochastic modeling paradigm, there is a very
important parameter to take into account: the “radius”. Indeed, this parameter clearly
explains the decision of social distancing promulgated by the responsible authorities.
Let us now analyze the traffic pattern in relation to the different radius values used.

6.3.3. ABM: Remarks

Based on the results obtained, we note that the disease dynamics follow a completely
stochastic behavior, where at each execution of the performed simulation, there are different
observations such as Figure 8a that represents the initial situation, Figure 8b gives us 0.49%
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of exposed, 4.9% of infected, 2.45% of asymptomatic, 1.47% of RPT, 0.49% of RWT, Figure 8c
gives us 1.47% of exposed, 3.9% of infected, 2.9% of asymptomatic, 0.49% of RPT, 0% of
RWT, and Figure 8d gives us 0.98% of exposed, 1.47% of infected, 1.96% of asymptomatic,
0.98% of RPT, 0% of RWT. The aspect of things verifies the random character of the model.
We have also observed one of the very important parameters of the agent modeling, which
is the radius, because it is an ABM modeling that establishes a detailed study on the inter-
individual contact and we clearly see that although enjoying a random behavior, the radius
can impact the pace of the propagation. Therefore, we have analyzed at the same time
t = 23, the dynamics of the mixed population through different values of radius. We clearly
notice with Figures 9–11 that when the radius of contagion is small, the disease takes a long
time to settle in the population.

(a) (b)

(c) (d)

Figure 8. Simulations of the model according to parameter values from Table 4. With (a) the initial
situation, (b–d) display the disease evolution up to a given time t.
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Figure 9. Dynamics of COVID-19 according to the radius of contamination equal to 1 m.

Figure 10. Dynamics of COVID-19 according to the radius of contamination equal to 2 m.
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1 
 

 
Figure 11. Dynamics of COVID-19 according to the radius of contamination equal to 5 m.

6.4. General Discussions

Thanks to the simulation, on the side of the EBM approach, we could observe the
disease on many deterministic angles. It is precisely in this perspective that we were able to
realize that the dynamics of the disease depends essentially on the parameters or different
rates accompanying the models, such as λ, β, to mention only these. We also note that
this way of doing things allows us to confirm the disease momentum with respect to the
indicator parameterR0, where we can obviously see that the epidemic grows withR0.

With the ABM approach, we observed more clearly the evolution of the disease with
regard to inter-individual relationships with a particular focus on a relevant parameter
that we call the radius, relying more on the stochastic dynamics. The simulation obviously
confirms the fact that equation-based models are fast (run time) compared to agent-based
models. We can also observe in Figure 12, by varying the number of susceptible individuals,
some distinctive aspects between the two approaches can be seen. The curves of the
equation-based model are smooth, contrary to those of the agent-based models that have a
certain randomness introduced by the stochastic aspect of the agents.

Figure 12a,c,e represent simulations of the equation-based model. The model is deter-
ministic. Figure 12b,d,f represent simulations from ABM. This model is stochastic. Table 5
presents experiment results carried out using a computer with the following characteristics:
ACER Aspire E5-571, Intel(R) core i3, with 4 × 1.7 Ghz CPU, and a 4096 MB RAM.

Table 5. Time cycle comparison table.

Number of Susceptible people ABM EBM

100 283 cycles 25 cycles
200 340 cycles 28 cycles
500 420 cycles 30 cycles
1000 500 cycles 35 cycles
5000 600 cycles 38 cycles

Average CPU load 50.4% 35.4%
Average Mem. Capacity 715.5 Mo 650.6 Mo
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Comparative curves for the two models with: (a): the EBM for S = 100; (b): the ABM for
S = 100; (c): the EBM for S = 500; (d): the ABM for S = 500; (e): the EBM for S = 1000; (f): the ABM
for S = 1000.

7. Concluding Remarks

In this paper, we have noted a major problem shaking our society: “the context of
precarious life impacted by the COVID-19 pandemic”. To address this problem, we explored
two approaches: equation-based modeling and agent-based modeling on the spread of
diseases, especially during the COVID-19 pandemic. Then, we proposed a compartmental
model of SEIAR-type describing the transfer diagram of COVID-19 dynamics. Based on the
results obtained, it seems, on the one hand, that EBM is synthetic, formalized, homogeneous,
and faster. Moreover, modeling with equations tends to describe reality at the macroscopic
level. The model is far from the biological reality of the studied phenomenon. On the other
hand, ABM is modular, incremental, heterogeneous, and close to the biological reality of the
studied phenomenon since the description is made at the individual level. A few drawbacks
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were raised with ABM: the model is not formalized and requires many parameters, high
runtime, and high memory capacity, as shown in Table 5.

Both approaches can be used to model the problem studied in this paper. However, it
would be advisable to combine them to understand the reality, since none of them seem to
outrank the other on the desirable criteria for a modeling approach.

8. Future Works

Indeed, the greatest challenge in an epidemiological study is to link the macroscopic
aspect to the microscopic one. The latter can only be achieved by adopting a hybrid
approach. Thus, we confirm that it would be much more relevant to couple the two models
under a hybrid paradigm following the example of other scientists, such as [8], in order to
take advantage of the two models. The whole starts from a compartmental model SEIAQR,
with ideas of inserting one compartment such as the “QUARANTINE” type.
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