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Abstract: A logical presentation of the Mean-Median Compromise Method (MMCM) is provided
in this paper. The objective is to show that the method is a generalization of majority judgment,
where each tie-break step is Lp deepest voting. Therefore, in its tie-breaking procedures, the proposed
method returns scores that range from the median to the mean. Among the established characteris-
tics that it satisfies are universality, neutrality, independence of irrelevant alternatives, unanimity,
and monotonicity. Additionally covered are robustness, reaching consensus, controlling extremes,
responding to single-peakedness, and the impact of outliers. Through computer simulations, it is
shown that the MMCM score does not vary by more than 12% even for up to 50% of strategic voters,
ensuring the method’s robustness. The 1976 Paris wine taste along with the French presidential poll
organized by OpinionWay in 2012 were well-known and highly regarded situations in the area of
social choice to which the MMCM was used. The outcomes of MMCM have shown remarkable
consistency. On the basis of the democratic standards that are most frequently discussed in the
literature, other comparisons were performed. With 19 of the 25 criteria satisfied, the MMCM is in the
top ranking. Supporting theorems have shown that MMCM does not necessarily require an absolute
majority to pass an opinion for which a minority expresses a strong preference while the majority is
only marginally opposed.

Keywords: decision-making; democratic processes; electoral systems; mean-median compromise
method; preference aggregation; voting mechanisms

MSC: 00A06; 91A80; 91B12; 91B14; 91-02; 91A35

1. Introduction

In a community that claims to be democratic, the allocation of social or political
responsibilities is based on the voting procedure. The latter is the act by which an individual
in the community expresses their preference over the proposed candidates. A mapping
of voter preferences for a subset of candidates known as “winners” is what constitutes
an election.

Since the mid-1900s, it has been known, thanks to the work of Arrow [1], that no
social choice rule, regardless of complexity, can satisfy a relatively narrow set of democratic
conditions. This discovery, sometimes known as “Arrow’s Impossibility Theorem” or the
“General Possibility Theorem”, applies specifically to ordinal preferences, where voters
rank options without assigning explicit scores. In contrast, methods like majority judgment
(MJ), range voting (RV), and approval voting (AV) use cardinal preferences, where voters
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provide ratings or approval levels. The axiomatic line of research in social choice theory
has thus broadened to explore these alternative ballot types, seeking solutions that balance
fairness and representativeness. In [2,3], the authors propose axiomatic approaches to
voting methods incorporating cardinal preferences that aim to provide a more nuanced
understanding of voter preferences by allowing voters to express the intensity of their
preferences, rather than just their order.

In the early 21st century, refs. [3–8] proposed majority judgment (MJ), a voting function
for which preferences are cardinal (evaluations) and whose result for each candidate is the
median of the evaluations they received from voters. The winner of the MJ is the candidate who
gets the highest median. Sadly, even though the MJ defeats Arrow’s impossibility thesis, it still
has a number of additional flaws (Felsenthal and Machover [9], Felsenthal [10], Felsenthal
and Machover [11]). According to Aubin et al. [12], the primary flaw in MJ is that its tie-
breaking rule is not suitable.

In fact, range voting (RV), approval voting (AV), and majority judgment (MJ) are all
Lp deepest voting, with p = 1 for MJ and p = 2 for both AV and RV, according to [12].
The vulnerability of the deepest voting to manipulation (strategic voting) increases with
increasing p. Nevertheless, AV and RV are also not flawless systems. In the opinion of
Balinski and Laraki [3], Aubin et al. [12], Balinski and Laraki [13], the RV is extremely
manipulable. The AV’s disadvantages are covered in [7].

This paper introduces the Mean-Median Compromise Method (MMCM) [14–16],
which is an extension of the MJ and RV with the proper tie-breaking rule. The voting
method is a Lp deepest with a recurrent tie-breaking procedure. A Lp deepest voting with
p ∈ [1, 2] is used to break ties.The idea behind a deepest voting is to use the scatter plot’s
deepest point to determine the winner by representing each voter’s grade on d candidates
as a point in Rd. A depth function is maximized to determine the lowest spot. The reader
is referred to [12] for further information on Lp deepest voting. The criteria of neutrality,
universality, unanimity, monotonicity, and independence of irrelevant alternatives (IIA) are
all satisfied by MMCM, as is the case with any depth function. Unfortunately, MMCM has
some downsides, including the Condorcet winner, Condorcet loser, reinforcement (except
in the scenario when p = 2), and the no-show paradoxes.

The MMCM bridges the gap between traditional social choice theory and broader
scientific fields such as sensory and consumer science, sensometrics, multivariate data anal-
ysis, and statistical analysis of rankings and preference data. By incorporating Lp deepest
voting in its tie-breaking steps, it covers a spectrum of scores from the median to the mean.
This method demonstrates robustness, achieving consensus while controlling extremes
and responding effectively to single-peaked preferences and outliers. Its applications to
renowned scenarios such as the 1976 Paris wine tasting and the 2012 French presidential
poll organized by OpinionWay showcase its consistency and reliability.

The remainder of this paper is organized as follows: In Section 2, important definitions
are examined. A number of both MJ and RV’s restrictions are listed in Section 3. In Section 4,
MMCM is described in a new way. Afterwards, Sections 5 and 6 analyze and discuss the
MMCM. In Section 7, MMCM and most valuable voting functions are compared using
25 democratic criteria. The Paris 1976 wine taste and the 2012 French presidential poll
organized by OpinionWay—real-world situations—are subjected to MMCM in Section 8,
where the results are compared to those obtained from alternative voting schemes. In
Section 9, we discuss MMCM’s robustness, sensitivity, and implications for various voting
contexts. Final thoughts are included in Section 10.

2. Preliminaries
2.1. Ranking Framework

Let C = {c1, c2, . . . , cm} be the set of m candidates and V = {v1, v2, . . . , vn} be the set
of n voters. An ordinal preference or ranking is the binary relation ≻, defined as follows:
ci ≻ cj if ci is preferred to cj. Ordinal preferences constitute the voting paradigm where
voters rank (strictly or weakly) candidates from the best to the worst.
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2.2. Grading Framework

Suppose that we have m candidates, n voters, and each voter vi allots to each can-
didate cj a grade gij chosen from a set denoted by Λ. As pointed out by [4], Λ might be
discrete, finite, or an interval of real numbers. In this paper, we will consider that Λ is
strictly ordered.

A profile is an m× n matrix (gij)i=1,...,n,j=1,...,m ∈ Λm×n of grades gij assigned by voters
to candidates. Hereafter, we denote a profile by ϕ. We can easily notice that Λ = {0, 1} for
approval voting and first-past-the-post, while it might be discrete or continuous for RV, MJ
and, as will be seen, MMCM.

2.3. Method of Grading

A method of grading can be seen as a function f that assigns to any profile ϕ one final
rating for every candidate f : Λm×n → Γm (with Λ ⊂ Γ). The set Γ of possible grades f
returns may differ from Λ [12].

In [4], it is shown that any method of grading satisfies:

• Anonymity: Consider the profile

ϕ =


g11 g21 . . . gi1 . . . gj1 . . . gn1
g12 g22 . . . gi2 . . . gj2 . . . gn2
. . . . . . . . . . . . . . . . . . . . . . . .
g1m g2m . . . gim . . . gjm . . . gnm


and f (ϕ) = (g⋆1 , . . . , g⋆m). When ∀i, j = 1, . . . , n swapping the columns of voters vi and
vj does not alter the final result, the function f is said to be anonymous.

• Neutrality: Suppose two candidates cx and cy in competition and n voters {v1, . . . , vn}.

Consider the profile ϕ =

[
g1x g2x . . . gnx
g1y g2y . . . gny

]
and f (ϕ) = (g⋆x, g⋆y) with g⋆x > g⋆y .

The function f is said to be neutral when ∀i = 1, . . . , n if vi assigns now giy to cx and
gix to cy, f (ϕ) = (g⋆y , g⋆x) with g⋆y < g⋆x.

• Unanimity: Suppose two candidates cx and cy in competition and V = {v1, v2, . . . , vn}
the set of n voters. Consider the profile

ϕ =

[
g1x g2x . . . gnx
g1y g2y . . . gny

]
and f an aggregation function. The function f is said to be unanimous when ∀vi ∈ V,
gix > giy ⇒ cx ≻ cy.
If a candidate who receives a greater rating from every voter than the other candidates
is declared the winner, the function is considered unanimous.

• Independence of irrelevant alternatives: If the overall community preference between
two candidates cx and cy is cx ≻ cy, this ranking should remain unchanged by the
addition or removal of a candidate cz, regardless of the grades they receive from voters.

• Monotonicity: Let V = {v1, . . . , vn} be the set of voters, and C = {c1, . . . , cm} be the
set of m candidates. Let G = {g1j, . . . , gnj} be the set of grades assigned by voters vi to
a fixed candidate cj. Suppose f an aggregation function whose final score for cj with
respect to G is s. If any grade gij (for i = 1, . . . , n) is replaced by g′ij such that g′ij ≥ gij,
we denote the new f score as s′. Then, it must hold that s′ ≥ s. A candidate’s final
score should either rise or remain the same if voters give them a higher rating.

2.4. Deepest Voting

Deepest voting is a method that uses geometric principles to determine the most
representative candidate based on voters’ grades. Here is how it works:

• Grading matrix: Each voter vi assigns a grade gij to each candidate cj, resulting in a
grading matrix G.
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• Candidate positioning: Each candidate is represented as a point Cj in an n-dimensional
space, where n is the number of voters. The coordinates of Cj are the grades Gij given
by each voter vi.

• Depth function: A depth function D(Cj) is used to determine how central a candidate’s
position is within the scatter plot of all candidates. One common depth function is the
half-space depth, as follows:

D(Cj) = min
u

∣∣∣{x ∈ Rn : u⊤x ≤ u⊤Cj

}∣∣∣
where u is a unit vector, u⊤ the transpose of the vector u and u⊤x the dot product (or
inner product) of the two vectors u⊤ and x.

• Deepest point: The candidate cj with the highest depth function value D(Cj) is selected
as the winner. Mathematically

Winner = arg max
j

D(Cj)

2.5. Lp Depth Function

The Lp depth of a point x in a multivariate distribution is a measure of how central x
is within the distribution. Its mathematical definition is as follows: given a point x ∈ Rd

and a dataset X = {x1, x2, . . . , xn} ⊂ Rd

• Compute the Lp-norm distance between the point x and each data point xi:

dp(x, xi) =

(
d

∑
j=1

|xj − xij|p
) 1

p

where xj and xij are the j-th components of x and xi, respectively.
• Depth Function: The Lp depth function Dp(x) is defined as

Dp(x) =

(
1
n

n

∑
i=1

1
dp(x, xi)

)−1

This depth function gives a measure of centrality for the point x, with higher val-
ues indicating a more central position relative to the distribution of data points in the
Lp-norm space.

2.6. Majority Judgment

Majority judgment (MJ) evaluates candidates using the median of grades assigned by
voters. Let C = {c1, c2, . . . , cm} be the set of candidates and V = {v1, v2, . . . , vn} the set of
voters. Each voter vi assigns a grade gij to candidate cj.

2.6.1. Majority Judgment for Small Electorate

When the electorate is small, Balinski and Laraki [4] propose the following procedure
for applying the majority judgment:

1. Determine majority grade: For each candidate cj, determine the majority grade g̃j. If
Gj = (r1, r2, . . . , rn) (with r1 ≥ · · · ≥ rn) is the sorted list of grades for cj, then

g̃j =

{
r(n+1)/2 if n is odd
r(n+2)/2 if n is even

2. Tie-breaking: If two candidates receive the same majority grade, the procedure is
repeated. In the subsequent iteration, the majority grade is eliminated from each
candidate’s list of grades.
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Example: Consider three candidates c1, c2, and c3, graded by seven voters. The grades are
as presented in Table 1.

Table 1. Grades assigned by 7 voters to 3 candidates.

Voter c1 c2 c3

v1 4 3 2
v2 3 4 3
v3 4 3 4
v4 4 3 2
v5 5 5 3
v6 3 4 4
v7 4 2 3

Step 1: Determine majority grades

• c1: sorted grades: [5, 4, 4, 4, 4, 3, 3], majority grade = 4
• c2: sorted grades: [5, 4, 4, 3, 3, 3, 2], majority grade = 3
• c3: sorted grades: [4, 4, 3, 3, 3, 2, 2], majority grade = 3

Step 2: Compare majority grades
Rank candidates based on their majority grades, as follows:

c1 ≻ c2 ∼ c3

Step 3: Tie-breaking
Candidates c2 and c3 have the same majority grade. We eliminate this grade and

repeat the procedure for the remaining grades.

• c2: sorted grades: [5, 4, 4, 3, 3, 2], majority grade = 3
• c3: sorted grades: [4, 4, 3, 3, 2, 2], majority grade = 3

Candidates c2 and c3 are still tied. Again, we drop the majority grade and repeat
the procedure.

• c2: sorted grades: [5, 4, 4, 3, 2], majority grade = 4
• c3: sorted grades: [4, 4, 3, 2, 2], majority grade = 3

The tie is broken. Therefore, the final ranking is

c1 ≻ c2 ≻ c3

2.6.2. Majority Judgment for Large Electorate

In scenarios with multiple judges or voters, such as presidential elections, Balinski
and Laraki [2,3] propose a straightforward method for resolving ties. They introduce
the majority gauge, represented as the triplet (pa, α∗, qa). In this notation, pa denotes the
proportion of evaluations for a candidate that exceed the majority grade, while qa represents
the proportion that fall below it. The majority grade itself is denoted by α.

α∗ =

{
α+ if p > q
α− if p ≤ q

α∗ is called the “modified majority grade” of the candidate. The ranking of candidates
by majority gauge (denoted ≻mg) is carried out in the following way: let a and b two
candidates with the majority gauges (pa, α∗a , qa) and (pb, α∗b , qb), respectively. Then, a ≻mg b
or (pa, α∗a , qa) ≻mg (pb, α∗b , qb) iff α∗a > α∗b or (α∗a = α∗b = α+ and pa > pb) or (α∗a = α∗b = α−

and qa < qb).

Example: Around 2000 people were asked to rate the 12 candidates for the Republic’s pres-
idency using the following common language: Excellent, Very good, Good, Passable, Poor,
and Reject. This was part of the 2007 experiment conducted by Balinski and Laraki [17].
This experiment took place in Orsay, a city near Paris.
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The corresponding percentage is bolded to reflect the majority grades of the candi-
dates in the running (see Table 2). Bayrou, Royal, and Sarkozy all have the same grade
(“Good”), as can be seen. The majority gauges for Bayrou, Royal, and Sarkozy are, respectively,
(44.3%, Good+, 30.6%), (39.4%, Good−, 41.5%), and (38.9%, Good−, 46.9%). Royal ≻mg Sarkozy
because 41.5% < 46.9%, and Bayrou ≻mg Royal because Good+ > Good−.

Table 2. Results of the MJ experiment in 2007 in Orsay.

Candidates Excellent Very Good Good Passable Poor Reject

Besancenot 4.1% 9.9% 16.3% 16.0% 22.6% 31.1%
Buffet 2.5% 7.6% 12.5% 20.6% 26.4% 30.4%

Schivardi 0.5% 1.0% 3.9% 9.5% 24.9% 60.4%
Bayrou 13.6% 30.7% 25.1% 14.8% 8.4% 7.4%
Bové 1.5% 6.0% 11.4% 16.0% 25.7% 39.5%

Voynet 2.9% 9.3% 17.5% 23.7% 26.1% 20.5%
Villiers 2.4% 6.4% 8.7% 11.3% 15.8% 55.5%
Royal 16.7% 22.7% 19.1% 16.8% 12.2% 12.6%

Nihous 0.3% 1.8% 5.3% 11.0% 26.7% 55.0%
Le Pen 3.0% 4.6% 6.2% 6.5% 5.4% 74.4%

Laguiller 2.1% 5.3% 10.2% 16.6% 25.9% 40.1%
Sarkozy 19.1% 19.8% 14.3% 11.5% 7.1% 28.2%

The order determined by the majority gauge is used in Table 3.

Table 3. Ranking of candidates by the majority gauge for the 2007 experiment.

Range Candidates p α∗ q

1 Bayrou 44.3% Good+ 30.6%
2 Royal 39.4% Good− 41.5%
3 Sarkozy 38.9% Good− 46.9%
4 Voynet 29.8% Passable− 46.6%
5 Besancenot 46.3% Poor+ 31.2%
6 Buffet 43.2% Poor+ 30.5%
7 Bové 34.9% Poor− 39.4%
8 Laguiller 34.2% Poor− 40.0%
9 Nihous 45.0% Reject —
10 Villiers 44.5% Reject —
11 Schivardi 39.7% Reject —
12 Le Pen 25.7% Reject —

2.7. Range Voting

Range voting is a voting method where voters rate each candidate within a specified
range (e.g., 0 to 10). The winner is the candidate with the highest average score.

Mathematically, let n be the number of voters and m be the number of candidates.
Each voter vi assigns a score sij to candidate cj. The total score Tj for candidate cj is

Tj =
n

∑
i=1

sij

The average score s̄j for candidate cj is

s̄j =
Tj

n
The candidate with the highest average score s̄j wins

Winner = max
j

s̄j
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Example:
Assume there are three voters and three candidates (A, B, and C). Voters give the following

scores:

Voter A B C

1 8 5 6
2 7 7 8
3 9 6 7

Calculate the total scores as follows:

TA = 8 + 7 + 9 = 24, TB = 5 + 7 + 6 = 18 and TC = 6 + 8 + 7 = 21

Calculate the average scores as follows:

s̄A =
24
3

= 8, s̄B =
18
3

= 6 and s̄C =
21
3

= 7

Candidate A wins with the highest average score of 8.

3. Some Paradoxical Results for MJ and RV

In this paragraph, we demonstrate a few counterintuitive findings for MJ and RV using
examples. These findings offer sufficient evidence that both approaches have advantages
and disadvantages and that a compromise solution must be found.

For a survey of the MJ paradoxes, we direct interested readers to [10,18,19]. In the
ranking framework, ref. [20] present a voting function akin to MJ. The answers to the re-
proaches addressed to the MJ are provided by [3,21–23]. However, to date, some responses
are still considered unsatisfactory [24,25]. An examination of RV is offered by [3,13].

Example 1. Consider a, b, and c, three friends who would like to go out to eat together. They have
the option of steak or a dish of raw vegetables. Nevertheless, one of them is a vegan and cannot have
meat at all. Though they marginally favor beef, non-vegans enjoy all vegetables. Their preferences
are as follows:

a b c

Steak 9 9 0
Vegetables 8 8 9

The median for veggies is 8, and for beef it is 9. The food the three friends should eat,
in the MJ’s opinion, is meat. All three companions, though, think the veggie dish is the best.
Choosing veggies (with an average score of 25

3 ) over meat (with an average score of 6) as
advised by the RV (mean-based voting function), would be the best decision. This instance
shows that the pathology of majority tyranny is still present in MJ.

Example 2. Two skaters a and b have their performances judged by five people. The following is
how the results table is displayed:

j1 j2 j3 j4 j5

a 10 5 4 4 3
b 7 7 5 5 1

Since skater a’s average score is 5.2 and skater b’s is 5, it follows that a ≻ b. However,
three of the five judges—or 60%—think that b ≻ a. The MJ (median-based) gives b ≻ a.
Due to his excessively high opinion of a, j1 forced his/her preference on the entire jury.
This is inappropriate for a community that aspires to democracy. The best decision would
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be the one suggested by MJ. One could consider this situation to be a lack of robustness
for RV.

Example 3. In the table below, candidates a and b are evaluated by voters on a scale from 1 to 6,
where 6 represents the highest rating and 1 the lowest. The table presents the proportions of voters
assigning each specific rating to the candidates. For instance, 21% of voters rated candidate a as
6, whereas 4% rated candidate b with the same highest rating. For both candidates, the grading
framework yields the following results:

6 5 4 3 2 1

a 21% 29% 50% 0% 0% 0%
b 4% 47% 2% 5% 7% 35%

The MJ says that b wins. All voters, however, awarded a a minimum of the score of 4,
whereas over one-third (35%) rejected b. The optimal course of action is as suggested by
RV, which favors a (average 4.71), to the detriment of b (average 3.31). This example shows
that MJ fails to find the consensual candidate.

Example 4. This instance is adapted from [26]. Refer to Example 3 for the same evaluation context:

6 5 4 3 2 1

a 2% 1% 97% 0% 0% 0%
b 31% 20% 0% 0% 0% 49%

Despite the fact that b is rejected by 49% of voters and a receives at least a grade 4
from all voters, the MJ asserts that b wins. RV circumvents this paradox by saying that b
wins based on its average. In fact, the average for a is 4.05, whereas the average for b is
3.35. As with the last scenario, this one serves as an example of how MJ sometimes fails to
reach a consensus.

Example 5. Another example that is similar to the precedent is adapted from [18,26].

6 5 4 3 2 1

a 50% 0% 0% 0% 0% 50%
b 0% 0% 0% 0% 52% 48%

MJ claims that b prevails since 50% of voters give a the highest possible grade and all
voters think b should receive no more than grade 2 (with 48% of the lowest marks). In this
instance, the RV is chosen over the MJ since the average of a (3.5) is higher than the average
of b (1.52).

Examples 1–5 demonstrate that there are situations in which RV’s decision is preferable
to MJ’s, and vice versa. For a comprehensive discussion on how to select a central tendency
metric, see [27]. As we will see later, it is possible to find a compromise method that will
allow the best option to be selected in each of the given scenarios.

4. A New Description of the Mean-Median Compromise Method

In the previous section, we presented situations where range voting decisions are
preferable to those of majority judgment, and vice versa. These examples illustrate the
strengths and weaknesses of both methods. In this section, we claim that there exists a
method capable of resolving these examples without exhibiting the pathologies seen in RV
and MJ. This method must demonstrate robustness, a consensual nature, freedom from the
tyranny of the majority pathology, and other democratic properties as well.
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4.1. Mean-Median Compromise Method for Small Electorate

Let S be the set of candidates, n be the number of voters, and gij be the grade assigned
by voter vj to candidate ci. The MMCM computes the final score f (ci) for each candidate ci
as follows:

• Step 1: Ordering of grades. Arrange the grades assigned to each candidate ci in
descending order: g∗i1 ≥ g∗i2 ≥ . . . ≥ g∗in

• Step 2: Determination of intermediate grades.

2.1. Choose a degree of division k

2.2. Compute the value of the amplitude of division φ =
n
2k

2.3. Determine 2k − 1 grades such that

* For each value of p from 1 to 2k − 1

· Compute r(p) = ⌈φ × p⌉ where ⌈x⌉ denotes rounding up to the nearest
integer.

· If r(p) is not equal to any previous r(q) for q < p, then select the grade
with rank r(p) in the ordered set of grades as intermediate grade.

* Let Mi be the set of intermediate grades for candidate ci, where Mi =
{g∗rl1

, g∗rl2
, . . . , g∗rl(2k−1)

}.

• Step 3: Computation of final score. Compute the arithmetic mean of intermediate
grades for each candidate.

f (ci) =
1

|Mi| ∑
g∈Mi

g (1)

Let us consider six candidates evaluated by six judges, as defined in Table 4. The
ordered profile is given in Table 5. The MMCM score with k = 2 for candidate C is computed
as follows:

1. Ordered grades: [5, 5, 4, 4, 3, 2].

2. Degree of division: φ =
6
22 = 1.5.

3. Intermediate grades: for p = 1, . . . , 22 − 1 = 3.

• r(1) = ⌈1.5 × 1⌉ = ⌈1.5⌉ = 2
The grade with rank 2 in the ordered set is 5.

• r(2) = ⌈1.5 × 2⌉ = ⌈3⌉ = 3
The grade with rank 3 in the ordered set is 4.

• r(3) = ⌈1.5 × 3⌉ = ⌈4.5⌉ = 5
The grade with rank 5 in the ordered set is 3.

The intermediate grades are [5, 4, 3].

4. The MMCM score for candidate c is
5 + 4 + 3

3
= 4.

If k = 3, the MMCM score for candidate c is computed as follows:

1. Ordered grades: [5, 5, 4, 4, 3, 2].

2. Degree of division: φ =
6
23 = 0.75.

3. Intermediate grades: for p = 1, . . . , 23 − 1 = 7.

• r(1) = ⌈0.75 × 1⌉ = ⌈0.75⌉ = 1
The grade with rank 1 in the ordered set is 5.

• r(2) = ⌈0.75 × 2⌉ = ⌈1.5⌉ = 2
The grade with rank 2 in the ordered set is 5.

• r(3) = ⌈0.75 × 3⌉ = ⌈2.25⌉ = 3
The grade with rank 3 in the ordered set is 4.

• r(4) = ⌈0.75 × 4⌉ = ⌈3⌉ = 3
Rank 3 has been previously found.
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• r(5) = ⌈0.75 × 5⌉ = ⌈3.75⌉ = 4
The grade with rank 4 in the ordered set is 4.

• r(6) = ⌈0.75 × 6⌉ = ⌈4.5⌉ = 5
The grade with rank 5 in the ordered set is 3.

• r(7) = ⌈0.75 × 7⌉ = ⌈5.25⌉ = 6
The grade with rank 6 in the ordered set is 2.

The intermediate grades are [5, 5, 4, 4, 3, 2].

4. The MMCM score for candidate C is
5 + 5 + 4 + 4 + 3 + 2

7
= 3.28571.

Table 4. Example of profile.

J1 J2 J3 J4 J5 J6

A: 5 5 4 5 5 5
B: 5 4 4 4 3 4
C: 2 5 3 4 4 5
D: 4 3 2 3 3 3
E: 3 2 4 3 3 3
F: 4 2 1 2 2 3

Table 5. Example of a profile arranged in descending order.

A: 5 5 5 5 5 4
B: 5 4 4 4 4 3
C: 5 5 4 4 3 2
D: 4 3 3 3 3 2
E: 4 3 3 3 3 2
F: 4 3 2 2 2 1

4.2. Mean-Median Compromise Method with Many Voters

When multiple voters participate, the grades they assign to each candidate are aggre-
gated, and the frequency of each grade is expressed as a percentage. Consequently, the
total electorate is normalized to 100%. Intermediate grades are then computed as follows:

φ =
100
2k

For k = 2, for example, intermediate grades are those with cumulative frequencies at
25%, 50%, and 75%. For k = 3, they are at 12.5%, 25%, 37.5%, 50%, 62.5 75%, and 87.5%.

Table 6 is a modified version of the example given in ([6], p. 440) based on a survey
conducted by OpinionWay between April 12 and 16, 2012, a few days prior to the French
presidential election’s first round [21].

Table 6. OpiononWay result from 2012 French presidential poll (737 ballots) (data from [6]).

Candidates 7 6 5 4 3 2 1

F. Hollande 12.48 16.15 16.42 11.67 14.79 14.25 14.24
F. Bayrou 2.58 9.77 21.71 25.24 20.08 11.94 08.69

N. Sarkozy 9.63 12.35 16.28 10.99 11.13 7.87 31.75
J.-L. Mélenchon 5.43 9.50 12.89 14.65 17.10 15.06 25.37

N. Dupont-Aignan 0.54 2.58 5.97 11.26 20.22 25.51 33.92
E. Joly 0.81 2.99 6.51 11.80 14.65 24.69 38.53

P. Poutou 0.14 1.36 4.48 7.73 12.48 28.09 45.73
M. Le Pen 5.97 7.33 9.50 9.36 13.98 6.24 47.63

N. Arthaud 0.00 1.36 3.80 6.51 13.16 25.24 49.93
J. Cheminade 0.41 0.81 2.44 5.83 11.67 26.87 51.97
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The MMCM is then applied as if there were only 100 voters. If, for instance, k = 2, the
intermediate grades are those that are, respectively, ranked at 25%, 50%, and 75%, that is,
the first three quartiles. Hence, the MMCM scores for F. Hollande and F. Bayrou are both 4.
In fact, their intermediate grades are [6, 4, 2] for F. Hollande and [5, 4, 3] for F. Bayrou.

4.3. General Algorithm with Tie-Breaking Mechanism

The candidate with the better score naturally ranks ahead of the other when their
MMCM scores differ. However, the following guidelines from [14,15] are applicable if both
candidates have the same MMCM score.

Selecting the value of k is a crucial issue when using MMCM, as any value of k is
permissible. If k is too large, at least one intermediate grade may be duplicated. This
scenario is excluded by the method’s definition (see Step 2.3 in Section 4.1). However, to
avoid paradoxes found in MJ, we recommend starting with k = 2 for full-scale elections.
The smallest value of k that equates the set of grades to the set of intermediate grades is
termed the “index of the maximal division” and is denoted ν. This value is the upper
bound of k in the algorithm (see Algorithm 1).

Algorithm 1: General MMCM algorithm
Begin with k = 2
Compute ν
Compute f k(a) and f k(b)
while f k(a) = f k(b) do

k = k + 1
Compute f k(a) and f k(b)
if k = ν then

exit

if f k(a) > f k(b) then
a ranks ahead of b

else
if f k(b) > f k(a) then

b ranks ahead of a
else

a and b are tied as both have all the same grades.

5. Analyzing the MMCM
5.1. Index of the Maximal Division

Let G = {gi1, gi2, . . . , gin} be the set of grades allotted by n voters to candidate ci and
M be the set of intermediate grades. The index of the maximal division, denoted ν, is the
smallest degree of division k such that M = G.

Theorem 1. Given N as a set of n judges, the index of maximal division is determined by
ν = ⌈log2 n⌉.

Proof. We know that the division is maximal when M = G. To conduct this, we must have

1
2
≤ φ ≤ 1

Hence,
1
2
≤ n

2k ≤ 1

If we invert fractions, inequalities become
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1 ≤ 2k

n
≤ 2

n ≤ 2k ≤ 2n

log2 n ≤ k ≤ 1 + log2 n

From an Archimedean result, we obtain k = ⌈log2 n⌉.

The index of the maximal division ν ensures that the number of divisions grows
logarithmically with the size of the electorate. The blue curve in Figure 1 shows the
evolution of the index of maximal division as the number of voters increases. Even for
billions of voters, the tie-breaking mechanism cannot exceed 40 iterations (See Figure 1).

Figure 1. Growth of the index of maximal division.

5.2. Middlemost Aggregation

A middlemost is an aggregation function that identifies the middle value(s) in a set
of ordered evaluations. If the number of evaluations is odd, the middlemost value is
exactly the median. If the number of evaluations is even, the middlemost value is one
of the two central values or an intermediate value of them (high middlemost and low
middlemost). Concretely, a middlemost aggregation function f , for g1 ≥ · · · ≥ gn is
f (r1, . . . , rn) = r(n+1)/2 when n is odd, and f (r1, . . . , rn) = r(n+2)/2 when n is even.

In [4], the authors advocated for the middlemost to be the unique aggregation functions
that agree with the majority of judges in assigning a grade g that reduces the possibility of
effective-manipulability or counter crankiness and maximizes welfare. As will be shown,
when k = 1, MMCM is middlemost.

Theorem 2. When the degree of division k = 1, the Mean-Median Compromise Method is a
middlemost aggregation function.

Proof. Let a be a candidate and G = {g∗1 , . . . , g∗n} be the set of his or her grades with

g∗1 ≤ · · · ≤ g∗n. If k = 1, then φ =
n
2

and the unique intermediate grade is the one that

ranks at r(⌈ n
2 ⌉), i.e., g∗⌈ n

2 ⌉
. When n is odd g∗⌈ n

2 ⌉
= g∗n+1

2
. When n is even, then g∗⌈ n

2 ⌉
= g∗n

2
is

the upper-middlemost. Whatever the parity of n, the Mean-Median Compromise Method
returns the middlemost.

Theorem 3. When the degree of division k = ν, the Mean-Median Compromise Method is
equivalent to the arithmetic mean.
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Proof. Let a be a candidate and G = {g∗1 , . . . , g∗n} be the set of his or her grades with

g∗1 ≤ · · · ≤ g∗n. If k = ν, then M = G. Hence, f (a) =
1

|M| ∑g∗∈M g∗ = 1
n ∑n

i=1 g∗i . The last

equality shows that, when k = ν, the MMCM is the definition of arithmetic mean.

5.3. Desired Properties

It is checked that the Mean-Median Compromise Method possesses, inter alia, these
properties (see Theorem 4 below):

• Anonymity: This property ensures that all voters are treated equally. If any two voters
were to swap their ballots, the result would remain unchanged. Whenever voters are
permuted, the MMCM does not change the winner. Aggregation is based on merits
and not people who assess them (see Section 2.3 for mathematical definition).

• Neutrality: This property ensures that the voting method treats all candidates equally.
In other words, if any two candidates were to swap places in every voter’s ballot, the
result would still reflect that swapped order. The MMCM treats all candidates equally
in the calculation of the final score (see Section 2.3 for mathematical definition).

• Pareto effeciency: Given a set of candidates C = {c1, c2, . . . , cm} and a set of voters
V = {v1, v2, . . . , vn}, each voter assigns a grade gij to each candidate cj. A grading
mechanism f is Pareto-efficient if, for any two candidates cx and cy,

∀vi ∈ V, gix ≥ giy ⇒ MMCM(cx) ≥ MMCM(cy)

where MMCM(c) denotes the MMCM score for candidate c.
• Independence of irrelevant alternatives: Consider C = {c1, . . . , cm} a set of m can-

didates. If for any two candidates cx, cy ∈ C, the overall community preference is,
say, cx ≻ cy, then this ranking should not be affected by the addition or removal of
any other candidate cz, whatever grades voters assigned to them. The MMCM score
depends only on the grades assigned to the candidates, not on the presence or absence
of the other candidates.

• Monotonicity: Let V = {v1, . . . , vn} be the set of voters, and C = {c1, . . . , cm} the set
of m candidates. Let G = {g1j, . . . , gnj} be the set of grades assigned by voters vi to
a fixed candidate cj. Suppose the MMCM score with respect to G is s. If any grade
gij (for i = 1, . . . , n) is replaced by g′ij such that g′ij ≥ gij, we denote the new MMCM
score as s′. Then, it must hold that s′ ≥ s.

• Robustness to strategic voting: MMCM is robust against strategic voting, meaning
that voters cannot manipulate the outcome by strategically misrepresenting their
preferences. This property ensures that the final result reflects the genuine preferences
of the voters and prevents individuals from strategically gaming the system to their
advantage. The robustness to strategic voting is essential for ensuring the integrity
and fairness of the voting process. Computer simulations will show that MMCM is
relatively strategy-proof.

• Consensus building: MMCM fosters consensus building by promoting compromise
and accomodating a broad range of voter preferences. This property encourages can-
didates to appeal to a broader base of voters and discourages polarization, ultimately
contributing to the overall stability and cohesion of the voting system. An interesting
and detailed discussion on polarization is provided by ([6], pp. 448–452).

Theorem 4. MMCM meets neutrality, anonymity, Pareto efficiency, monotonicity, and indepen-
dence of irrelevant alternative properties.

Proof. To show that MMCM is neutral, we consider an electorate N = {v1, v2, . . . , vn} of
n voters (n ≥ 2). If two candidates ci and cj are evaluated by these n voters and their
grades are, respectively, Gi = {g1i, g2i, . . . , gni} and Gj =

{
g1j, g2j, . . . , gnj

}
, where gxα

indicates the grade allotted by voter x to candidate α(x = 1, . . . , n; α = i or j). Suppose
that f (ci) is the MMCM score for candidate ci. If f (ci) > f (cj), then ci ≻mm cj (read “ci
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ranks ahead of cj by MMCM”). If for each voter vx (x = 1, . . . , n) gxi becomes gxj and
vice versa, then the set of i’s grades becomes Gj =

{
g1j, g2j, . . . , gnj

}
and j’s one becomes

Gi = {g1i, g2i, . . . , gni}. Therefore, f (cj) > f (ci) ⇒ cj ≻mm ci and MMCM is neutral.
Now, with the set of grades Gi for candidate ci, if voters vx and vy permute (i.e., gxi

becomes gyi and vice versa whatever x, y = 1, . . . , n), Gi will not change. Thus, f (ci) will
not change even if the voters were permuted. As ci is unspecified, this remains true for any
candidate, showing that MMCM is anonymous.

Let ci and cj be two candidates with perspectives grades Gi = {g1i, g2i, . . . , gni} and
Gj =

{
g1j, g2j, . . . , gnj

}
, such that gxi > gxj ∀1 ≤ x ≤ n. We will obtain for any division

degree k (with k ≥ 1): Mi = {g⋆1i, g⋆2i, . . . , g⋆mi} and Mj =
{

g⋆1j, g⋆2j, . . . , g⋆mj

}
(with

m = 2k − 1) where Mx indicates the set of intermediate grades for candidate cx. Since
gxi > gxj ∀1 ≤ x ≤ n, we have g⋆xi > g⋆xj ∀1 ≤ x ≤ m, and thus,

1
m

m

∑
i=1

g⋆xi >
1
m

m

∑
i=1

g⋆xj ⇒ f (ci) > f (cj) ⇒ ci >mm cj.

This last expression establishes that MMCM meets the Pareto efficiency property.
To show the monotonicity of MMCM, we consider two candidates ci and cj with

perspective grades Gi and Gj, such that f (ci) > f (cj), i.e., ci ≻mm cj. Suppose that voter vx,
having previously allotted grade gxi to ci, re-evaluated her or him by allotting a grade g′xi
such that g′xi > gxi ceteris paribus. Three cases are then possible, as follows:

• Grade g′xi does not amend the overall constitution of intermediate grades Mi. Then,
f (ci) remains the same and f (ci) > f (cj).

• Grade g′xi is an intermediate grade (i.e., voter vx is pivotal) and fx(ci) is ci’s final
evaluation by MMCM after taking into account the preference amendment of voter vx.
Thus fx(ci) > f (ci) > f (cj) ⇒ fx(ci) > f (cj).

• Grade g′xi is not an intermediate grade but amends the overall constitution of interme-
diate grades Mi. In this case, an intermediate grade is replaced by another by shifting
a row on the left. Let g⋆ li (1 ≤ l ≤ 2k − 1) be the replaced grade. This grade is replaced
by g⋆(l−1)i. However, g⋆(l−1)i ≥ g⋆ li (grades are arranged in decreasing order prior to
the evaluation of f ). We then have fx(ci) ≥ f (ci) > f (cj) ⇒ fx(ci) > f (cj).

It is demonstrated that MMCM is monotonic through these three potential scenarios.
Finally, we show that MMCM is independent of irrelevant alternatives. Voters base

their assessments on the performance of each candidate, regardless of one another. There-
fore, if a voter vx assigns grade gxi to candidate ci and gxj to another candidate cj so that
gxi ≥ gxj, then whatever grade gxt she or he assigns in addition to candidate ct, the or-
der gxi ≥ gxj will never be changed. This clearly shows that MMCM is independent of
irrelevant alternatives and concludes our demonstration.

5.4. Homogeneity Property

The homogeneity property in the context of social choice functions states that if
all individual preferences or evaluations are multiplied by the same factor, the overall
preference or evaluation order should remain unchanged. In [28], it is shown that the
MMCM, in its former formulation, is not homogeneous. As will be shown, the new
formulation of the Mean-Median Compromise Method makes it meet this condition.

Theorem 5. The Mean-Median Compromise Method meets the homogeneity condition.

Proof. To prove this theorem, we need to show that the MMCM score remains unchanged
when each grade is replicated p times (p ≥ 2). Let us denote the original grades allotted



Mathematics 2024, 12, 3631 15 of 31

by voters to candidates i as g∗ij (with j = 1, . . . , n), and let p be the replication factor. The
original and replicated sets of grades are, respectively, given by decreasing ordered sets

Go = {g∗i1, . . . , g∗in} and Gr = {g∗i1, . . . g∗i1︸ ︷︷ ︸
p times

, . . . , g∗in, . . . g∗in︸ ︷︷ ︸
p times

}

A grade g∗ij ∈ Go replicated p times occupies ranks (j − 1)× p + 1 to i × p in Gr. For a

degree of division k, we have exactly 2k − 1 intermediate grades rankings rl = ⌈n × l
2k ⌉ in Go

(l = 1, . . . , 2k − 1). In the case voters are replicated p times, intermediate grades rakings

should be r∗l = ⌈n × l
2k × p⌉. It suffices for us to show that r∗l ∈ Il = [(rl − 1)× p + 1, rl × p]

∀ l = 1, . . . , 2k − 1, i.e.,

⌈n × l
2k ⌉ × p − p + 1 ≤ ⌈n × l

2k × p⌉ ≤ ⌈n × l
2k ⌉ × p (2)

We already know that ⌈x × y⌉ ≤ ⌈x⌉× ⌈y⌉ ∀ x, y ≥ 0. The second inequality of Equation (2)

is then checked. According to Theorem 1, the division is total if
1
2
≤ φ =

n
2k ≤ 1. At

worst case, if θ =
n × l

2k −I( n×l
2k ), where I(x) denotes the integer part of real number x, we

have ⌈ n×l
2k ⌉ ≤ I( n×l

2k ) + 1 and ⌈ n×l
2k × p⌉ ≤ I( n×l

2k × p) + 1 ≤
[
I( n×l

2k × p) + 1
]

p− p+ 1 =

I( n×l
2k )× p + 1 (i). We can easily check the middle expression of Equation (2), which can

be expressed as I( n×l
2k )× p + θ × p (ii). From (i) and (ii), we deduce the first inequality of

Equation (2).

5.5. Tyranny of Majority

The “Kill the Jews” vote is an example of the kind of majority dictatorship that [29]
discusses. The vote is framed as a choice between “letting them live on their wealth” and
“killing the Jews and using their money to cut taxes for the survivors”. A comparable
referendum would be held in a society (in Africa, for instance) to decide whether to execute
or not to execute LGBTQIA+ individuals.

Certain vote outcomes may benefit the majority marginally while having extremely
negative impacts on the minority. Assume that there are only two types of votes in this
society, with a rating scale of 0 to 9. These are the strong preference votes, “Kill = 0,
Live = 9”, expressed by LGBTQIA+ individuals, and “Kill = 5, Live = 4”, expressed by
non-LGBTQIA+ individuals. In such a case, RV will permit LGBTQIA+ people to remain
alive if their percentage of voters exceeds 10%. But as long as LGBTQIA+ people remain a
minority, which is frequently the situation in many communities, particularly in Africa, MJ
will kill them regardless of their percentage.

We can challenge this minority with a strong preference that forces its choice on society
as a whole if we thoroughly examine this issue. Is the opinion of a minority of 10% truly
appropriate for the entire community to follow?

By allowing a reasonable minority with strong preferences to override a majority with
weak preferences, MMCM lessens the effects of the tyranny of the majority. MMCM allows
LGBTQIA+ people to live if their percentage is at least 25%. It is evident that MMCM is
majority-tyranny-proof (which MJ is not) and robust (which RV is not).

As a general rule, if the valuation scale is [α, β], the minority and majority ratios are
n1 and n2, respectively. Minorities have strong preferences over the alternatives “Kill the
Minority” and “Save the minority”, to which they allot α and β ratings, respectively. The
majority have a weak preference for these two alternatives, allotting them ω1 and ω2, re-
spectively, (with ω1 > ω2). Under these conditions, the following theorems are established:
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Theorem 6. Subject to the aforementioned conditions, minorities will be saved, using range voting,

if n1 >
ω1 − ω2

β − α + ω1 − ω2
.

Proof. To overcome the majority, the minority must score higher on the range voting for
“Save minority” than for “Kill minority”, that is,

βn1 + ω2n2 > αn1 + ω1n2 (∗)

Given that n1 + n2 = 1, n2 = 1 − n1 (**) follows. We obtain the following if we replace

(**) in (*): βn1 + ω2(1 − n1) > αn1 + ω1(1 − n1). We determine n1 >
ω1 − ω2

β − α + ω1 − ω2
by

developing and solving this inequation with regard to n1.

Theorem 7. By MMCM, it takes β > 3ω1 − 2ω2 for the 25% minority to defeat the 75% majority.

Proof. We can easily check that [β, ω2, ω2] and [ω1, ω1, ω1] are the intermediate grades for
“Save the Minority” and “Kill the Minority”, respectively. Therefore, β+ω2+ω2

3 > ω1+ω1+ω1
3

(***) is required for “Save the Minority” to prevail. With regard to β, calculating the equation
(***) yields the following result: β > 3ω1 − 2ω2.

5.6. Computational Complexity

We break down the computional complexity of MMCM into its main steps, as follows:

1. Sorting: Sorting the grades in descending order has a time complexity of O(n log n),
where n is the number of grades.

2. Intermediate grade computation:

• Determining the degree of division k and computing the values of φ have a
constant time complexity O(1).

• Computing the ranks r(p) involves multiplying φ × p and rounding up to the
nearest integer. This operation is performed 2k − 1 times and has a time complex-
ity of O(2k).

• Finding the corresponding grade for each r(p) involves accessing elements in the
ordered list of grades. This operation is performed 2k − 1 times and has a time
complexity of O(1) for each access.

3. Final score: Summing the intermediate grades and dividing by the number of intermediate
grades has a time complexity of O(2k), as it involves summing 2k − 1 grades.

Overall, the dominant step in the MMCM algorithm is the computation of intermediate grades,
which has a time complexity of O(2k). The degree of division is at most ν = ⌈log2 n⌉, so the
overall time complexity of MMCM at worst case is O(2⌈log2 n⌉) = O(n). In summary, the
MMCM has a time complexity of O(n) as it operates efficiently even for large numbers
of grades.

5.7. Other Democratic Properties in the Literature

In this paragraph, we list and define more widely accepted democratic standards for a
voting function within the context of social choice theory. Since there is a large collection of
these attributes, the list is not all-inclusive.

• Universality: A fair voting function must ensure that each person participating in
the decision-making process has a certain amount of freedom. Furthermore, while
determining the election winner, each of their choices needs to be considered.

• Non-dictatorship: A fair voting mechanism must avoid a dictator. A voter vi is called
a dictator if, when they assign candidate c a rating higher than any other candidate,
regardless of the overall profile, candidate c is always the winner.
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• Resoluteness: The function must always select the winner among the m candidates
c1, c2, . . . , cm.

• Choice-monotonicity: A voting rule is choice-monotonic if a ≻ b, and, in the assess-
ments of some or all voters, candidate a moves strictly higher or candidate b moves
strictly lower, then it still returns a ≻ b.

• Rank-monotonicity: In addition to the winner staying in first place, the final ranking
among the other candidates should also stay the same if voters’ assessments stay the
same but the winner moves up.

• Strong monotonic: In the event that the public’s opinion of a non-winner declines, the
winner remains the front-runner.

• Clone-resistance: The introduction of a clone of a losing alternative never modifies the
initial result.

• Expressiveness: If a voting rule asks voters for additional details about their preferences—
such as completeness, intensity, etc.—it is considered expressive.

• Reinforcement condition: If an electorate is split into two groups and the results of the
votes are the same for each group, then the results will not change when the two voter
groups are combined.

• Participation condition: If adding some voters who favor a winning candidate does
not make that candidate lose, then the decision rule is said to satisfy the Participation
requirement.

• Majority condition: A decision rule satisfies the majority condition if candidate a is
consistently delivered as the winner whenever an absolute majority rates candidate a
higher than candidate b.

• Condorcet winner condition: If a decision rule consistently chooses the Condorcet
winner when one exists, it is said to satisfy the Condorcet winner criterion. A candidate
who receives the utmost support from the electorate over all others is declared the
Condorcet winner.

• Condorcet Loser condition: If a decision rule never chooses the Condorcet loser when
one exists, it is said to satisfy the Condorcet loser condition. A candidate who loses a
one-on-one match to any other contender is considered a Condorcet loser.

• Transitivity condition: When the electorate’s preferences are a ≻ b and b ≻ c, given
three possibilities a, b, c ∈ A, then we must have a ≻ c. This is known as a transitive de-
cision rule. The Condorcet paradox must be avoided in order to meet this requirement.

• Simpson’s condition: When a decision rule does not result in the Simpson’s paradox—a
phenomenon wherein, upon merging two distinct groups, an apparent relationship
seems to be reversed—it is said to satisfy Simpson’s condition.

• Polynomial runtime complexity: If a decision rule converges to result in polynomial
time—that is, in a reasonable amount of time—it is said to be runtime polynomial time.

5.8. Democratic Properties Not Satisfied by MMCM

It is demonstrated in [12] that a few fundamental paradoxes, such as Condorcet’s
and no-show paradoxes, arise at Lp depths, including the MMCM. However, refs. [3,12]
discuss these shortcomings in relation to the grading framework. The MMCM is essen-
tially a variant of deepest voting, wherein specific depth functions serve as tie-breaking
mechanisms.

6. Characterization of the MMCM

As previously shown, the MMCM is a Lp deepest and method of grading, which
satisfies multiple democratic requirements. What interests us in this case is compiling a
short list of properties that are exclusively filled by MMCM. Let us first define the terms
as follows:

Definition 1 (Pivotal function). Let τ = {g1, . . . , gn} be a distribution and f : Rn → R :
(g1, . . . , gn) 7→ f (g1, . . . , gn) be a method of grading. We say that f is a “pivotal function” if
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∃Pi = {g̃1, . . . , g̃l} ⊊ τ and a numerical function ψ : Rl → R such that f (g1, . . . , gn) =
ψ(g̃1, . . . , g̃l). The function ψ is called the “characterizer of f ”.

Since only the intermediate grades are used to determine the final score, MMCM is
unquestionably pivotal. The method’s pivots are the intermediate grades. Observe that
altering the data size impacts every intermediate grade, ensuring the method’s universality.

Definition 2 (Regularity). Let (g1, . . . , gn) ∈ Rn be a grade distribution. We consider the pivotal
function f : Rn → R, whose pivots are g̃1, . . . , g̃l . Assume that k bipartition of the distribution
yields intervals Ip ∈ {g1, . . . , gn}, where p = 1, . . . , 2k − 1. When there is a pivot g̃t such that
g̃t = f m(Ip), where f m is a middlemost aggregation function, then the pivot is said to be “regular”.
If every pivot in f is regular, then f is referred to as a “regular function”.

Definition 3 (Mean-wise function). Let f be a pivotal function. We say that f is a “mean-wise
function” if its characterizer ψ is a mean function.

With the definitions given, we can state the characterization theorem of the MMCM
as follows:

Theorem 8. The MMCM is the only method of grading that is simultaneously pivotal, regular,
and mean-wise allowing the arithmetic mean as characterizer.

Proof. Let τ = {g1, . . . , gn} be a set of grades and f : Rn → R be a method of grading.
Since f is pivotal and regular, there exists Pi = {g̃1, . . . , g̃l} ⊊ τ and ψ : Rl → R such that
f (g1, . . . , gn) = ψ(g̃1, . . . , g̃l). The characterizer of f is the arithmetic mean. So,

f (g1, . . . , gn) = ψ(g̃1, . . . , g̃l) =
1
l

l

∑
i=1

g̃i

The last expression is the definition of MMCM.

7. Comparing MMCM with Alternative Voting Mechanisms

The democratic properties desired for a voting function are as numerous as they are
diverse. In this section, we make a comparison between MMCM and the most discussed
voting functions in the literature on the Theory of Social Choice. Some prior definitions of
the various properties are given above. Table 7 summarizes these properties as well as the
functions selected for comparison. The last column in gray is the one reserved for MMCM.
When a cell has a “+” in it, the voting function on the column fills the row’s property; if a
cell has a “−”, it does not.

MMCM is clearly the voting mechanism that meets the most democratic requirements,
as evidenced by the fact that 19 out of 25 selected criteria are filled. While not exhaustive,
this list does include the most often-mentioned criteria in the literature. The fact that
the MMCM meets the majority of the most-discussed democratic criteria reassures us to
defend it. Using MMCM in real-life situations could ensure that every vote counts and
that everyone’s voice is heard. Next, MMCM covers the aspects of equity and inclusion in
decision-making processes.
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Table 7. Voting rules with their satisfied and failed criteria.
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Universality + + + + + + + + + + + + + + + + + + + + +
Independence of irrelevant alternatives − − − − − − − − − − − − − − − − − − + + +
Pareto + + + + + + + + + + + + + + + + + + + + +
Non-dictatorship − − + − + + + + − − + + − + − − + − + − +
Resoluteness + + + − + + + + + + − + + + + + + + + + +
Neutrality + + − + + + + + + + + + + + + + + + + + +
Monotonicity + + + + + − − − − − + + + + + + + + + + +
Anonymity + + + + + + + + + + + + + + + + + + + + +
Clone−resistance − − − + − + − − − − − − − + − − + + + + +
Expressiveness − + + + + + + + + + + + + + + + + + + + +
Homogeneity + + + + + + + − + − + + + + + + + + + + +
Reinforcement condition + + + + + + − − + − + + − + − − − + − + −
Participation condition + + + + − − − − − − − + − + − − − − − + −
Majority condition − − − + + + + + + + + − + + + + + + − − −
Majority tyranny proofness − + − − − − + − − − − − − − − − − − − + +
Condorcet winner condition − − − + − − − + + + + + + + + + + + − − −
Condorcet loser condition − + + + + − + + + − + + − + + + + − − − −
Transitivity condition + + + − + + + + + + + + + − − − + + + + +
Simpson’s condition − − − − − − − + + − + − − + + + + + − + −
Strategy−proofness (*) − − − − + − − − − − − − − − + + − − + − +
Polynomial runtime complexity + + + + + + + + + + + + + + + + + + + + +
Consensus building (*) − − − − + − − − − − − − − − + + − − + − +
Balanced outcome (*) − − − − + − − − − − − − − − + + − − − + +
Moderation of extremes (*) − − − − + − − − − − − − − − + + − − + − +
Convergence to social consensus (*) − − − − + − − − − − − − − − + + − − + − +

Total of filled criteria 11 14 13 14 15 13 13 13 14 10 15 15 12 17 14 14 16 15 17 17 19

(+): criterion is filled by the voting rule; (−): criterion is not filled by the voting rule; (*) see discussions on this criterion in Section 9.
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8. MMCM in Real-World Situations
8.1. The Judgment of Paris

Owner of the Caves de la Madeleine in Paris, Steven Spurrier, along with Patricia
Gallagher of the French Académie du Vin, arranged a blind tasting of four wines each
of white Burgundies and red Bordeauxs, as well as six white and six red Californian
wines that were, at best, unknown and, at worst, disregarded in Europe. All eleven
judges—sommeliers, wine journalists, makers of well-known wines, and proprietors of
Michelin-starred restaurants—were incredibly skilled wine enthusiasts. Both the white
wines (Chateau Montelena) and the red wines (Stag’s Leap Wine Cellars) from California
were graded higher than the French wines. As noticed by [30], this enhanced the standing
of Californian wines and altered the conventional wisdom held by specialists that only
French wines could be of exceptional quality. This is known as the “Judgment of Paris”.

In this paper, we analyze the competition for both red and white wines, and we
compare the final rankings achieved by MMCM with the results obtained using the most
popularized voting rules. Before we show the results, let us first present the voters and the
candidates. The list of competing red wines and Chardonnays is given in Table 8.

Table 8. Lists of competing red wines and Chardonnays (data from [31]).

Red wines

Code Wine Year Origin

A Stag’s Leap 1973 Californian
B Château Mouton Rothschild 1970 French
C Château Montrose 1970 French
D Château Haut-Brion 1970 French
E Ridge Vineyards Monte Bello Cabernet Sauvignon 1971 Californian
F Château Léoville—Las Cases 1971 French
G Heitz Wine Cellars Martha’s Vineyard Cabernet Sauvignon 1970 Californian
H Clos du Val Cabernet Sauvignon 1972 Californian
I Mayacamas Vineyards Cabernet Sauvignon 1971 Californian
J Freemark Abbey Winery Cabernet Sauvignon 1969 Californian

Chardonnays

Code Wine Year Origin

A Chateau Montelena Chardonnay 1973 Californian
B Mersault Charmes Roulot 1973 French
C Chalone Vineyard Chardonnay 1974 Californian
D Spring Mountain Vineyard Chardonnay 1973 Californian
E Freemark Abbey Winery Chardonnay 1972 Californian
F Bâtard-Montrachet Ramonet-Prudhon 1973 French
G Puligny-Montrachet Les Pucelles Domaine Leflaive 1972 French
H Beaune, Clos des Mouches Joseph Drouhin 1973 French
I Veedercrest Vineyards Chardonnay 1972 Californian
J David Bruce Winery Chardonnay 1973 Californian

The eleven judges were as follows, listed alphabetically:

• Pierre Brejoux (French) of the Institute of Appellations of Origin;
• Claude Dubois-Millot (French) (Substitute to Christian Millau);
• Michel Dovaz (French) of the Wine Institute of France;
• Patricia Gallagher (American) of l’Academie du Vin;
• Odette Kahn (French) Editor of La Revue du vin de France;
• Raymond Oliver (French) of the restaurant Le Grand Véfour;
• Steven Spurrier (British), owner of the Caves de la Madeleine;
• Pierre Tari (French) of Chateau Giscours;
• Christian Vanneque (French), the sommelier of Tour d’Argent;
• Aubert de Villaine (French) of the Domaine de la Romanée-Conti;
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• Jean-Claude Vrinat (French) of the Restaurant Taillevent.

8.1.1. Preferences of Judges

Each wine was given a score out of 20 by the judges during the Paris blind testing. The
judges were allowed to grade using their own standards because no set grading scheme
was provided. Calculating the arithmetic mean of each judge’s individual rating also
resulted in an overall ranking of the wines that the jury preferred. Competing wines
were ranked without consideration of Patricia Gallagher’s or Steven Spurrier’s grades.
According to [32], only the French judges’ grades were taken into account. But in order to
determine the final result, the scores of Steven Spurrier and Patricia Gallagher were taken
into account, according to [33]. In this paper, we agree with [31] to compute the final result
with Gallagher and Spurrier. The judges’ preferences are given in Table 9.

Table 9. Original grades of the judges for red wines and Chardonnays (data from [31]).

Red wines

Judges/Wines A B C D E F G H I J

Pierre Brejoux 14 16 12 17 13 10 12 14 5 7
Claude Dubois-Millot 16 16 17 13.5 7 11 8 9 9.5 9
Michel Dovaz 10 15 11 12 12 10 11.5 11 8 15
Odette Kahn 15 12 12 12 7 12 2 2 13 5
Raymond Oliver 14 12 14 10 12 12 10 10 14 8
Pierre Tari 13 11 14 14 17 12 15 13 12 14
Christian Vanneque 16.5 16 11 17 15.5 8 10 16.5 3 6
Aubert de Villaine 15 14 16 15 9 10 7 5 12 7
Jean-Claude Vrinat 14 14 15 15 11 12 9 7 13 7
Patricia Gallagher 14 15 14 12 16 14 17 13 9 15
Steven Spurrier 14 14 14 8 14 12 13 11 9 13

White wines

Judges/Wines A B C D E F G H I J

Pierre Brejoux 10 15 16 10 13 8 11 5 6 0
Claude Dubois-Millot 18.5 15 11 15 10 9 8 14 16 4
Michel Dovaz 3 12 16 10 4 10 5 4 7 2
Odette Kahn 16.5 16 12 10 13 9 8 16 5 1
Raymond Oliver 17 14 13 12 12 12 12 14.5 10 7
Pierre Tari 14 13 16 13 9 14 13 12 14 8
Christian Vanneque 16.5 16 14 9 15 7 9 6 8 5
Aubert de Villaine 18 15 10 13 12 13 10 15 12 8
Jean-Claude Vrinat 17 14.5 13 12 12 12 12 14.5 10 7
Patricia Gallagher 14 16 15 16 13 11 15 7 12 11
Steven Spurrier 14 11 14 10 15 15 14 7 10 10

8.1.2. Applying MMCM in the Paris 1976 Wine Tasting

Since the judges’ preferences are known, we applied MMCM to the 1976 Paris wine
tasting competition. As the electorate consists of 11 members, we have

• For k = 2, φ =
11
22 = 2.75, and the three intermediate grades are the grades occupying

ranks 3, 6, and 9.

• For k = 3, φ =
11
23 = 1.375 and the seven intermediate grades are the grades occupying

ranks 2, 3, 5, 6, 7, 9, and 10.

Table 10 shows the MMCM scores achieved by each wine based on the preferences of
Table 9. The gray cells indicate ex aequo that required the tie-break rule.
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Table 10. MMCM scores on the Paris 1976 wine tasting.

Red wines

Wines A B C D E F G H I J
k = 2 14.33 14 13.66 13.5 12.16 11.33 10.33 10.33 10.16 9.66
k = 3 – – – – – – 10.64 10.14 – –
Ranking 1 2 3 4 5 6 7 8 9 10
Chardonnays
Wines A B C D E F G H I J
k = 2 15.83 14.66 14 11.66 11.66 11 10.66 10.83 9.66 5.66
k = 3 – – – 11.71 12 – – – – –
Ranking 1 2 3 5 4 6 8 7 9 10

8.1.3. The Paris 1976 Wine Tasting Result

We exclusively concentrate on the voting rules that have received the most attention
and discussion in the social choice literature (see Appendix A) out of the many voting rules
that were specified in the literature (see, for example, [34,35]).

We use the voting rules specified herein to aggregate the judges’ preferences from the
1976 Paris wine tasting in Tables 11 and 12. Preferences as stated here do not allow the
application of the intriguing voting rule known as Shapley ranking, which was suggested
by [30]. For further information, the reader is directed to [30]. Hereafter, we consider that if
all m alternatives are tied at rank i, all of those m alternatives are ranked

k =
i+m−1

∑
j=i

j
m

=
m − 1

2
+ i

Next, in the ranking, the alternative that comes after will be ranked (i + m). For instance, if
four options are tied at rank three, they are all ranked 4−1

2 + 3 = 4.5.

Table 11. The Paris 1976 wine tasting: ranking red wines using different voting rules.

Wines A B C D E F G H I J
Voting Rules Rankings

Range voting 1 2 3 4 5 6 7 8 9 10
Plurality 3 6 1 2 4 9.5 5 9.5 8 7
Negative Plurality 2 5.5 2 5.5 5.5 2 5.5 9 10 8
Borda 1 3 2 4 5 7 6 10 9 8
Dowdall 3 4 1 2 5 10 6 9 7 8
Bucklin 1 2 4 3 5 6.5 8 9.5 9.5 6.5
Instant Runoff Voting 5 9 3 1 6 4 2 10 8 7
Coombs 2 3.5 1 3.5 6 5 7 8 10 9
Nanson 2.5 2.5 1 4.5 4.5 8 8 8 8 8
Baldwin 2.5 2.5 4.5 4.5 1 7.5 7.5 10 7.5 7.5
Dodgson 2.5 4 1 2.5 5 7 6 10 9 8
Copeland 2 4 1 3 5 7 6 9 10 8
Black 1 3 2 4 5 7 6 10 9 8
Simpson–Kramer 3 3 1 3 5 7.5 7.5 7.5 10 7.5
Ranked pairs 2.5 4 1 2.5 5 7 6 9 10 8
Smith 3 3 3 3 3 7 6 9 10 8
Schwartz 2.5 4 1 2.5 5 7 6 9 10 8
Quandt 1 3 2 4 5 7 6 10 9 8
Majority judgment 2 1 3 4 5 6 8 7 9 10
Borda Majority Count 1 2 3 4 5 6 7 8 9 10
Mean-Median Compromise
Method ∗ 1 2 3 4 5 6 7 8 9 10

*: Ranking obtained after tie-breaking.
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Table 12. The Paris 1976 wine tasting: ranking Chardonnays using different voting rules.

Wines A B C D E F G H I J
Voting Rules Rankings
Range voting 1 2 3 4 5 6 7 8 9 10
Plurality 1 4.5 2 4.5 4.5 4.5 8.5 8.5 8.5 8.5
Negative Plurality 4.5 4.5 4.5 4.5 4.5 4.5 4.5 9 4.5 10
Borda 1 2 3 4 5 6 7 8 9 10
Dowdall 1 3 2 4 5 7 9 6 8 10
Bucklin 1 3.5 2 7.5 3.5 7.5 7.5 7.5 7.5 7.5
Instant Runoff Voting 1 3 2 8 4 9 10 6 5 7
Coombs 1 2 3 5 4 6 7 9 8 10
Nanson 1 2.5 2.5 4 7.5 7.5 7.5 7.5 7.5 7.5
Baldwin 1 2 3 4 6 7 8 5 9 10
Dodgson 1 2.5 2.5 4 5 6 8 7 9 10
Copeland 1 2 3 4 5.5 5.5 7 8.5 8.5 10
Black 1 2 3 4 5 6 7 9 8 10
Simpson–Kramer 1 3.5 2 3.5 8.5 6 6 8.5 6 10
Ranked pairs 1 2 3 4 5 6 7 9 8 10
Smith 1 2 3 4 7 7 7 7 7 10
Schwartz 1 2 3 4 7 7 7 7 7 10
Schulze 1 2 3 4 6.5 5 6.5 9 8 10
Quandt 1 2 3 4 5 6 7.5 7.5 9 10
Majority judgment 1 2 3 5 4 7 8 6 9 10
Borda Majority Count 1 2 3 4 5 6 7 8 9 10
Mean-Median Compromise
Method ∗ 1 2 3 5 4 6 8 7 9 10

∗: Ranking obtained after tie-breaking.

When it comes to the official ranking of red wines—the one determined by range
voting—MMCM and the official result of the 1976 Paris wine taste coincide exactly. Al-
though opinions on the first two wines’ rankings are divided, there is agreement on the
rankings of the next eight red wines. By flipping the ranks of the fourth and fifth on one
side and the seventh and eighth on the other, MMCM ranks white wines differently than
the official result. The other wines are in the same range. The majority judgment upholds
the MMCM’s ranking with the exception of the wines ranked sixth and seventh.

8.2. The 2012 French Presidential Poll by OpinionWay

Using the dataset from the Terra Nova and OpinionWay presidential poll, we evaluate
the efficacy of the MMCM. The voting data from 993 participants in the 2012 French
presidential election, as detailed in Table 6, serves as the basis for our comparative analysis
between the traditional first-past-the-post (FPTP) system, the majority runoff (MR), the MJ,
and the RV among all ten candidates [6]. This experiment seeks to elucidate the potential
advantages and limitations of the MMCM in accurately reflecting voter preferences and
enhancing the robustness of electoral outcomes.

8.2.1. Preferences of Voters

In this study, we use data from the OpinionWay poll shown in Table 6 to examine
voter preferences from the 2012 French presidential election. This dataset provides a
comprehensive snapshot of the electorate’s choices and serves as a robust foundation for
analyzing the effectiveness of various voting schemes. We compare the MMCM to previous
systems in order to assess how effectively it represents voters’ complex sentiments by
looking at the distribution of preferences.

8.2.2. Applying MMCM to the 2012 French Presidential Election

In our analysis of the 2012 French presidential election, we will refer to the candidates
using the following coding system for clarity and brevity:

• “H” for F. Hollande;
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• “B” for F. Bayrou;
• “S” for N. Sarkozy;
• “M” for J.-L. Mélenchon;
• “DA” for N. Dupont-Aignan;
• “J” for E. Joly;
• “P” for P. Poutou;
• “LP” for M. Le Pen;
• “A” for N. Arthaud;
• “C” for J. Cheminade.

Hereafter, we will use this coding to enhance readability and focus on electoral
schemes, simplifying discussions on voter preferences and facilitating comparisons among
candidates.

Table 13 presents the MMCM scores for candidates in the 2012 French presidential
poll, highlighting the evaluation results based on different values of k. Cells are shaded in
various colors to denote instances of ties in the scores. To resolve these ties, the MMCM
was reapplied using k = 3. The final ranking of the candidates is presented in the last row,
indicating that candidate H ranks first, candidate M ranks fourth, candidate J ranks eighth,
and candidate C ranks last.

Table 13. MMCM scores for candidates in the 2012 French presidential poll.

Candidates H B S M DA J P LP A C
k = 2 4 4 3 3 2 1.67 2 2.33 1.33 1.33
k = 3 3.86 3.71 3.29 3.14 2.14 2 2 – 1.71 1.57
Ranking 1 2 3 4 6 8 7 5 9 10

8.2.3. Results of Other Voting Schemes

Table 14 reveals various insights about candidate rankings across four voting schemes:
MMCM, MJ, RV, and FPTP. At a glance, it is evident that François Hollande (H) consistently
ranks first in all voting schemes, highlighting his strong support among voters. Conversely,
Nathalie Arthaud (A) and Jacques Cheminade (C) both occupy the lower end of the
rankings, with Cheminade ranked last across all schemes.

A closer examination reveals some intriguing nuances in the rankings. For instance,
while Bayrou (B) maintains a stable second place across MMCM, MJ, and RV, he drops
to fifth in the FPTP system. This disparity implies that, as demonstrated by the MMCM
results, voters’ broader preferences for a more consensus-oriented approach are better
captured by MMCM, MJ, and RV than by the FPTP process.

Table 14. Candidate rankings under different voting schemes.

Voting Scheme MMCM MJ RV FPTP

H 1 1 1 1
B 2 2 2 5
S 3 3 3 2
M 4 4 4 4

DA 6 5 6 7
J 8 6 7 6
P 7 7 8 8

LP 5 8 5 3
A 9 9 9 9
C 10 10 10 10

The results indicate that the Mean-Median Compromise Method (MMCM) provides
a balanced representation of voter preferences, returning scores that range between the
median and mean. This characteristic positions MMCM as a compromise between the
extremes of the MJ and RV methods, suggesting it may effectively capture a broader
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consensus among voters. The consistency and fairness of MMCM are evident in candidate
B’s stable ranking, contrasting with the variability observed in FPTP. Additionally, MMCM
effectively addresses ties and provides a more accurate reflection of voter preferences,
underscoring its potential to improve electoral outcomes over traditional methods.

9. Discussion and Conjectures on MMCM

In this section, we engage in a thoughtful examination of MMCM’s performance,
offering conjectures and insights into its behavior across diverse electoral conditions. By
evaluating robustness, comparing with single-peaked distributions, and investigating
convergence to social consensus, we offer a positive outlook on the potential and distinctive
benefits of MMCM in diverse voting scenarios.

9.1. MMCM vs. Single-Peakedness

A single-peaked distribution occurs when voter preferences P over a set of candidates
{c1, c2, . . . , cm} follow a unimodal pattern. Mathematically, for a preference profile to be
single-peaked, there must exist a linear order < on the candidates such that for every voter
vi, there is a candidate c (the peak) where preferences decrease monotonically as one moves
away from c. That is, if cx < c < cy, then P(cx) ≤ P(c), and P(cy) ≤ P(c). In simple terms,
a single-peaked distribution occurs when voters’ preferences rise to a maximum grade for a
single option and symmetrically decrease as they grade alternatives further from this peak,
creating a single peak with no preference reversals.

When dealing with a single-peaked distribution of voter preferences, the MMCM may
exhibit the following behavior:

• (B1) Balanced outcome: MMCM aims to find a compromise between different pref-
erences by considering both the mean and the median of the assigned grades. In a
single-peaked distribution, where voter preferences are concentrated around a central
peak, MMCM is likely to produce a balanced outcome that reflects the central tendency
of the distribution.

• (B2) Moderation of extremes: MMCM’s emphasis on compromise may lead to the
moderation of extreme preferences. Due to its robustness, voters with extreme prefer-
ences on either end of the distribution may find their influence mitigated, as MMCM
seeks to find a consensus position that accommodates a broad range of preferences.
Computer simulations conducted on 108 voters, with the number of divisions k taking
values up to 14 (see Figure 2), show that even when 50% of voters replace their true
evaluations with extreme ones, the variation in the MMCM score does not exceed 12%.

Figure 2. Moderation of extremes with the MMCM.

• (B3) Consistent result: Due to its systematic approach to combining mean and median
values, MMCM is likely to produce consistent results that align with the central
tendency of the distribution. This consistency helps ensure that the outcome is robust
and reflective of the overall shape of the single-peaked distribution.
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• (B4) Influence of outliers: While MMCM aims to balance different preferences, outliers
or extreme grades may still have some influence on the final outcome, particularly if
they significantly impact the mean or median values. However, the overall effect of
outliers is likely to be moderated by the presence of a single peak in the distribution.

9.2. Strategy-Proofness

Take a look at Table 6. The intermediate grades of F. Hollande for k = 2 are 2, 4, and
6. As a result, F. Hollande’s final MMCM score is 4. Assume that F. Hollande has been
assigned a grade of gj by voter vj. The following circumstances are possible:

• If gj ≥ 6, then vj can no longer raise F. Hollande’s final score. He can, however,
decrease it by assigning a grade that is less than 6. Given that F. Hollande’s final score
is already significantly lower than vj had anticipated, it would not be prudent for
them to attempt to lower it even further.

• When 4 ≤ gj ≤ 6, vj has the ability to either raise or decrease F. Hollande’s final score,
depending on whether he receives a score greater than 6 or lower than 4.

• If 2 ≤ gj ≤ 4, then vj can raise F. Hollande’s final score if he or she assigns him a new
score higher than 4. Giving him a score of less than 2 is another way for him or her to
obtain a lower final score for F. Hollande.

• If gj ≤ 2, it is impossible for vj to lower F. Hollande’s score. Although it is not
reasonably their intention—F. Hollande’s score is already far better than he or she
wanted it to be—they can still increase it by awarding him a score greater than 2.

These examples demonstrate that MMCM is a useful statistical parameter that deters
strategic voting even if it is not entirely robust. Its lower robustness than MJ is, in our
opinion, advantageous because a statistical measure that is too robust runs the risk of
hiding important differences in the data. This may result in incorrect conclusions or an
underestimating of the risks, particularly in industries like banking or medicine where
exact variations are essential for making decisions. Readers who are interested might
review the debates on robust statistical parameters and implications in [36].

9.3. Robustness and Sensitivity

In the context of grading, robustness of a social choice rule can be mathematically
defined as the property that ensures the outcome remains stable and consistent when voter
grades are slightly perturbed. Formally, if f (G) is the social choice function applied to the
set of grades G, then f is robust if, for any small perturbation ϵ of the grades, the outcome
f (G + ϵ) ≈ f (G). This property ensures that minor changes in individual grades do not
significantly affect the overall social outcome.

To assess the robustness of MMCM under manipulative voting behavior, we conducted
extensive simulations. Initially, we analyzed the distribution of grades assigned by voters to
a candidate and computed the MMCM score for this candidate. Subsequently, we selected
5% of voters at random. If a voter’s original grade was less than the candidate’s MMCM
score, we altered this grade to the minimum possible value. Conversely, if the grade was
greater than or equal to the MMCM score, we changed it to the maximum possible value.

We repeated this simulation with 108 voters, varying the percentage of manipulated
voters at increments of 5%, up to 50%. Our results, illustrated in Figure 2, demonstrate
that even when up to 50% of voters replace their true evaluations with extreme grades, the
variation in the MMCM score does not exceed 12%. This finding underscores MMCM’s
robustness in mitigating the influence of extreme voting behaviors and preserving the
integrity of the consensus outcome.

9.4. Convergence to Social Consensus

We define the social consensus as the state that represents the most widely accepted
outcome among voters. In this context, “most widely accepted” refers to the final score
that a voting function returns for a candidate, reflecting the degree of satisfaction among
the majority of voters. This outcome is derived from the aggregated grades assigned to
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the candidates by the voters. Thus, the score indicates the candidate’s level of acceptance
within the electorate. The candidate with the highest score embodies the consensus, as
their score represents the broadest agreement across the voting population. Therefore, the
social consensus is not merely a reflection of a simple majority but an amalgamation of all
voter preferences, harmonized into a singular, representative score.

Achieving social consensus in voting is one of the fair properties that MMCM meets.
Extreme grades can cause methods like range voting to fail, as demonstrated in Section 3.
While majority judgment resists outliers, it has limitations that MMCM addresses better.
MMCM effectively balances mean and median scores, reducing the impact of extreme
grades and integrating a wider range of voter inputs for a more representative outcome.

10. Concluding Remarks

The purpose of this article is to persuade readers of several key facts about MMCM.
The MJ developed by Balinski and Laraki has an unsuitable tie-breaking mechanism and
remains overly robust. This extreme robustness can be perceived as a disadvantage rather
than a benefit. The following points have been discussed and/or proven:

• The majority judgment is a Lp deepest voting with p = 1.
• Range voting is a Lp deepest voting with p = 2.
• MJ’s tie-breaking system is incompatible with the deepest voting theory.
• MMCM is a deepest voting procedure of which MJ (without its tie-breaking mecha-

nism) is a special case.
• The different MMCM tie-breaking procedures include Lp deepest voting, with p

ranging from 1 to 2.
• As a method of grading, MMCM fulfills the conditions of universality, anonymity,

neutrality, monotony, and independence of irrelevant alternatives.
• To avoid the tyranny of the majority, MMCM is meant to be less robust than MJ (with

a division number of k = 2 at the beginning).
• Due to its membership in the Lp depths family, MMCM is vulnerable to no-show,

reinforcement, and Condorcet paradoxes, among others.
• The only voting process in the Lp depths family that is pivotal, regular, and allows the

arithmetic mean to be a characterizer is MMCM.
• When MMCM is used for real-world elections, such as the 1976 Paris wine taste and

the 2012 French presidential poll, consistent outcomes are obtained.

Based on the foregoing, we conclude that MMCM, whose tie-break mechanisms are Lp

depths with p varying between 1 and 2, is the best compromise between MJ (p = 1) and
RV (p = 2).

The Mean-Median Compromise Method has shown its effectiveness in real-world
scenarios like the 1976 Paris wine contest and the 2012 French presidential poll by Opin-
ionWay. To better understand its robustness, it needs further testing on diverse datasets.
Machine learning can enable dynamic adjustments in the degree of division k, enhancing its
adaptability to preferences. Ethical and cultural considerations could help ensure respect
for population variations. By focusing on adaptive modeling, empirical validation, and
ethical issues, we can increase the method’s applicability and impact.
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Abbreviations
The following abbreviations are used in this manuscript:

AV Approval Voting
FPTP First-Past-The-Post
IIA Independence of Irrelevant Alternatives
MJ Majority Judgment
MMCM Mean-Median Compromise Method
MR Majority Runoff
RV Range Voting

Appendix A

• Plurality: Every voter fills out a ballot with the name of one option listed. The winner
is the candidate with the most votes.

• Negative Plurality: Every voter submits a ballot with the candidates listed in complete
linear order. The candidates who receive the lowest number of votes in the final
position are returned by this rule.

• Borda: Every voter submits a ballot with the candidates listed in complete linear order.
For every vote that places a candidate in kth place, that candidate receives a score of
m − k. The winner is the contender with the highest overall Borda score. See [34,35]
for more details.

• Dowdall: This method is an alternative to the Borda count. Voters must assign unique
preference scores to each candidate, with no two candidates sharing the same score.
A voter’s first choice receives a score of 1, the second choice receives 1/2, the third
choice receives 1/3, and so on. The candidate with the highest total score wins.

• Bucklin: Voters may cast ballots based on rank preference. Votes for top choices are
tallied first. A candidate wins if they have a majority of the vote. If not, the initial
selections are supplemented with the second choices. Once more, the candidate with
the most total votes is the winner if a contender receives a majority of the vote. As
needed, lower rankings are added. The person who requires the fewest extra votes to
receive a majority wins if there is a tie in the stage.

• Instant Runoff Voting: According to their preferences, voters rate the candidates. First,
ballots are tallied according to each voter’s preference. Until one of the surviving
candidates obtains a majority, the candidate who receives the fewest votes at the
beginning of each round is eliminated. See [35] for more details.

• Coombs: Until there is only one candidate with a strict majority, we keep eliminating
the candidate who has received the most vetoes.

• Nanson: Every voter provides a rating of the contenders. They calculate the Borda
score. Those candidates whose Borda score is the same as the average or lower are
disqualified. After that, the procedure is repeated while computing a fresh Borda
count on the lowered profile. This process complies with Condorcet. See [34] for
more details.

• Condorcet: Every voter submits a ballot listing all of the candidates in complete linear
order. In pairwise comparisons, the winner is the candidate who receives the majority
of the votes over all other candidates. See [35] for more details.

• Baldwin: Nanson’s voting rule and this rule are closely connected. Up until one
candidate is left, it successively removes the candidate with the lowest Borda score. In
the event that multiple candidates have the same score, one of them is eliminated by a
tie-breaking method. See [34,35] for more details.
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• Dodgson: If an alternative can be changed to make a Condorcet winner by swapping
out as few adjacent alternatives in the individual rankings as possible, it is referred to
as a Dodgson winner. See [35] for more details.

• Copeland: Every voter submits a ballot with the candidates listed in complete lin-
ear order. There are pairwise comparisons between the candidates. A candidate’s
Copeland score is calculated by deducting the number of opponents who defeat them
from the total number of opponents they defeat. See [35] for more details.

• Black: There are two phases to this rule. First, we ascertain whether a Condorcet
winner exists. This is the victor, if there is one. If not, we return the Borda rule’s
outcome.

• Simpson–Kramer: Every voter submits a ballot with the candidates listed in complete
linear order. The winner is the candidate against whom the smallest majority (in favor
of another candidate) can be gathered. See [35] for more details.

• Ranked pairs: If there exists a Condorcet winner, the rule selects her or him. Otherwise,
just bypass the head-to-head outcome which will activate a loop. Ref. [37] points out
that even after taking into account every victory, there might still be more than one
possible ranking if there are ties. In this instance, the candidates who rank first in the
remaining possible rankings are deemed to be tied. Tideman has dubbed this rule
“ranked pairs” for this reason. See [30] for more details.

• Smith: This rule results in the election of every candidate in the Smith set, which is the
smallest non-empty set of candidates such that, in pairwise elections, every candidate
in the set defeats every candidate outside the set. The candidate is unique in the Smith
set when there is a Condorcet winner. See [35] for more details.

• Schwartz: Every candidate in the Schwartz set is elected by this rule. The union
of all the undominated sets forms the Schwartz set, which is a subset of the Smith
set. If all candidates within a set are pairwise undefeated by all candidates outside
the set, the set is said to be undominated; no non-empty proper subset can meet
this requirement. When there is a Condorcet winner, the Schwartz set is a singleton.
See [35] for more details.

• Schulze: From the one they most want to win to the one they least want to win, voters
rate the candidates. More than one candidate may receive the same preference, and
candidates may receive no number at all (which is seen to indicate that they are the
worst). Next, for every pair of candidates, the two are compared: the number of voters
who agree with the majority decision is noted. If t voters prefer x1 to x2, t voters prefer
x2 to x3, and so on, and t voters prefer x(m−1) to xm, then x1 is said to beat xm with
strength t. The winner is the candidate who beats any other candidate with the largest
strength t. See [38] for more details.

• Range voting: Voters are asked to provide a rating to each candidate; the total score of
the candidates is calculated by adding (or averaging) the grades. The candidate who
scores the highest wins the election. See [39–41] for more details.

• Borda Majority Count (BMC): Similar to range voting, this system also includes a tie-
breaking mechanism in the event that the scores are equal. See [18,19] for more details.

• Majority Judgment: Voters are asked to allot grades to candidates in a well-known
language. Median grades are computed for all candidates. The candidate with the
highest median wins. Since median values are often equal, the method is provided
with a tie-breaking mechanism. See [3] for more details.

• Quandt’s method: As multiple candidates may receive the same grade from the
judge, each is given the average of where they could fall in the judge’s ranking (for
example, the four candidates with the second-highest grade, who are ranked 3.5 each,
are occupying spots 2, 3, 4, and 5 in the ranking). According to this technique, the
candidates are ranked based on their sums, or equivalently, their averages, and the
judges’ individual rankings are treated as points. The contender with the lowest total
number of points is declared the winner. See [33] for more details.
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• Shapley ranking: An alternative to approval voting is this rule. Ref. [30] suggests
that each judge’s one vote unit be distributed evenly among the individuals in the
group of their choice. These shares are tallied, candidate by candidate, just like in
approval voting, and a final ranking is determined. It turns out that in an analogous
cooperative game, each candidate’s Shapley value is equal to the total “number of
votes” connected with them [42]. The candidate who receives the most votes is ranked
first among the others.
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