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ABSTRACT Traditional spatiotemporal data analysis often relies on predictive models that overlook causal
relationships, making it difficult to identify true drivers and formulate effective interventions. To bridge
this gap, we review causal machine learning (CML) techniques for spatiotemporal data, aiming to provide
robust insights into their unique advantages. Our literature review reveals that fewer than 1% of studies in
major databases explicitly integrate CML with spatiotemporal analysis. After rigorous screening, we analyze
51 relevant papers, categorizing their contributions into four key areas (totaling 62 methodological
approaches due to multi-category papers): 1) causal effect discovery and estimation (32 approaches),
2) prediction accuracy enhancement (19), 3) pattern recognition limitations (10), and 4) interpretability
(1). This distribution highlights a critical research gap, particularly in interpretability and comprehensive
frameworks. We further examine unique challenges in spatiotemporal data, such as spatial autocorrelation
and temporal dependencies, that complicate causal inference but also present opportunities for innovation.
Promising approaches include the synergy of spatiotemporal Granger causality and structural equation
modeling with spatial lags, which capture complex interdependencies while preserving interpretability.
Future directions include developing interpretable causal models, advancing real-time causal inference in
dynamic environments, and addressing computational challenges (scalability, efficiency, and complexity-
interpretability trade-offs). We also discuss ethical considerations, such as bias mitigation in causal discovery
and societal implications of spatiotemporal causal inference. By synthesizing challenges and opportunities,
this work advances the application of CML in spatiotemporal analysis, with implications for climate science,
economics, epidemiology, and urban planning.
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I. INTRODUCTION

The rapid advancement of technology has led to an exponen-
tial growth in spatiotemporal data across diverse domains,
including climate science, urban planning, epidemiology, and
social sciences. While traditional methods such as Granger
causality [1] and structural equation modeling [2] have
established foundational approaches for causal inference in
spatiotemporal data, they often struggle to uncover the under-
lying causal mechanisms in increasingly complex, high-
dimensional datasets. This limitation significantly constrains
the ability to develop effective interventions for critical real-
world challenges [3], [4], [5], [6]. Causal machine learning
(CML) has emerged as a powerful paradigm to address
these limitations. Recent advances in hybrid approaches,
particularly neural causal discovery models and graph-based
learning, have expanded the frontiers of causal inference in
several dimensions, such as in complex dependency model-
ing, where modern CML methods excel at capturing high-
dimensional, non-linear relationships and spatiotemporal
interdependencies that challenge traditional approaches [5],
in scalability, where techniques like Graph Neural Networks
(GNN) enable efficient representation of causal structures
in large-scale applications (e.g., urban traffic networks or
climate systems), overcoming the computational limitations
of classical methods [6], or in data integration, where they
facilitate the combination of observational data with domain
knowledge, proving particularly valuable in settings with
incomplete prior understanding of causal mechanisms [4].
Thanks to these advances, contemporary CML approaches
can effectively identify causal structures in dynamic systems
characterized by feedback loops and latent confounders
(scenarios where traditional constraint-based or score-based
methods typically fail), enabling more accurate identification
of true causal drivers, supporting targeted interventions,
improved decision-making, and deeper understanding of
complex system dynamics [7].

Despite these advancements, the integration of causal
machine learning with spatiotemporal data analysis remains
significantly underexplored. Our review of peer-reviewed
literature from reputable academic databases reveals that
only a small fraction of studies explicitly address this
critical intersection. This gap represents both a chal-
lenge and a substantial opportunity for methodological
innovation.

This paper provides three main contributions to bridge this
research gap by:

1) Providing a comprehensive synthesis of opportunities
and challenges in applying causal machine learning to
spatiotemporal analysis,

2) Highlighting on the potential of hybrid approaches that
combine traditional and emerging methods to yield
insights unattainable through conventional techniques
alone [4], [5], [8],

3) Analyzing novel methodological combinations to
address critical yet understudied aspects, particularly
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the interpretability of complex spatiotemporal causal
models.

Our review advances the field through four principal
dimensions:

1) Theoretical foundations: We systematically examine
the interplay between causal machine learning (includ-
ing graphical models and counterfactual reasoning) and
core spatiotemporal principles (such as autocorrelation
and non-stationarity), establishing a unified theoretical
framework.

2) Methodological integration: We critically analyze
both established techniques (e.g., spatiotemporal
Granger causality, structural equation modeling with
spatial lags) and emerging neural causal approaches,
assessing their respective capacities to address chal-
lenges like:

« High-dimensional dependency modeling,
« Interpretability-scalability trade-offs,
o Dynamic system representation.

3) Practical implementation: We synthesize actionable
insights from diverse application domains (including
epidemiology and urban mobility), identifying:

o Common computational bottlenecks,
« Data quality considerations,
« Effective implementation strategies.

4) Future Directions: We present a forward-looking
synthesis that:

« Examines ethical considerations with emphasis on
bias mitigation,
o Maps emerging research frontiers, including:
* Real-time causal analysis,
* Human-in-the-loop frameworks,
* Cross-domain transfer learning.

This study serves as both a reference and a roadmap for
researchers, practitioners, and policymakers working at the
intersection of causal inference and spatiotemporal analysis.
The paper is organized as follows: Section II establishes
foundational concepts; Section III surveys existing literature;
Section IV details our review methodology; Section V
examines integration approaches; Sections VI-VIII analyze
challenges, ethical considerations, and future directions; and
Section IX presents concluding remarks.

Il. BACKGROUND

A. FUNDAMENTALS OF CAUSAL MACHINE LEARNING
Causal inference and machine learning represent two comple-
mentary paradigms in data science. While machine learning
focuses on predictive accuracy through pattern recognition
in data, causal inference aims to establish cause-and-effect
relationships between variables [9], [10]. Applying causal
inference analysis involves:

« Causal effect identification: Determining the existence
of causal relationships between variables while distin-
guishing them from spurious correlations [11]. This step
involves:
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* Causal discovery: Techniques for uncover-
ing causal structures from observational data,
including:

- Constraint-based methods (e.g., PC and FCI
algorithms),

- Score-based approaches (e.g., Bayesian net-
works),

* Confounder control: Addressing confounding
variables that may bias observed relationships;

* Selection bias mitigation: Ensuring the sample
represents the target population;

o Causal effect estimation: Quantifying the magni-
tude and direction of causal effects [12]. Common
approaches include:

* Randomized Controlled Trials (RCTs)-the gold
standard,

* Observational methods (matching, weighting),

* Instrumental variable analysis.

o Counterfactual analysis: Evaluating hypothetical sce-
narios to understand potential outcomes under different
conditions or interventions [13]. This framework is
essential for:

* Assessing treatment effects,
* Policy impact evaluation,
* Robust causal model development.

Machine learning algorithms can complement causal

inference by:

« Pattern recognition in complex data: Machine learn-
ing enhances causal effect identification through:

* Automated feature
dimensional datasets,

* Dimensionality reduction for improved visualiza-
tion and analysis,

* Detection of non-linear relationships prevalent in
real-world systems [3], [13].

o Causal Effect Estimation: Machine learning provides
robust estimation techniques, including:

extraction from high-

* Advanced regression methods controlling for con-
founders,

* Structural equation modeling for complex causal
networks,

* Double/debiased machine learning for observa-
tional data [3], [13].

o Counterfactual Simulation: Machine learning enables:

* Synthetic data generation for hypothetical scenar-
108,

* Treatment effect estimation through simulated
interventions,

* Outcome prediction under alternative condi-
tions [3], [13].

The convergence of causal inference with machine learning
presents significant opportunities for addressing complex
real-world challenges, particularly in spatiotemporal data
analysis, where it enables the extraction of actionable
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insights from dynamic systems, the identification of space-
time-dependent causal mechanisms, or the development of
data-driven intervention strategies [3], [12], [14].

B. FUNDAMENTALS OF SPATIOTEMPORAL DATA

1) CHARACTERISTICS AND CHALLENGES

Spatiotemporal data integrates both spatial (geographic) and
temporal (time-based) dimensions, capturing phenomena that
evolve across space and time. This data type is characterized
by two key resolution parameters, namely, the spatial reso-
lution, which is the granularity of geographic information,
ranging from high resolution (precise location data) to
low resolution (broad area coverage), and the temporal
resolution, which is the sampling frequency, including high
frequency (continuous monitoring) and the Low-frequency
(periodic sampling). Common sources of spatiotemporal data
include Geographic Information Systems (GIS), Satellite
imagery, GPS trajectories, Sensor networks (Weather sta-
tions, traffic monitors), Digital platforms (Geotagged social
media, mobile data), or Economic indicators (location-based
market data) [16], [17]. It is worth noting that the selection
of appropriate resolutions presents analytical challenges,
as it directly impacts the validity and interpretability of
results [18], [19].

2) UNIQUE CHALLENGES
Spatiotemporal data analysis faces several distinctive chal-
lenges, such as:

« Data heterogeneity, which involves mixed data types
(numerical, categorical, geospatial) and varying mea-
surement scales and formats that require specialized
preprocessing pipelines [19];

« Collection biases in the process of data collection due
to sampling bias in sensor placement or measurement
errors in field data, which can induce representativeness
concerns [15];

« Complex dependencies that they can exhibit, such as
spatial autocorrelation (Tobler’s First Law) or temporal
autocorrelation (time-series dependencies), resulting in
complex spatiotemporal interactions [20].

3) IMPORTANCE OF DOMAIN KNOWLEDGE

Domain knowledge is crucial for understanding and address-
ing the challenges of spatiotemporal data analysis. Expertise
in a relevant field can help identify important variables
and features, select appropriate data sources and collection
methods, interpret results and draw meaningful conclusions,
and address domain-specific challenges and limitations [19],
[21].

C. TRADITIONAL VS. MODERN APPROACHES TO
SPATIOTEMPORAL DATA ANALYSIS

Traditional approaches for spatiotemporal data analysis
primarily employ statistical methods such as time series
analysis, spatial regression, and geostatistics. Although
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these techniques have proven effective in many research
contexts, they exhibit significant limitations when handling
complex, nonlinear relationships or large-scale datasets.
Widely used methods like Granger causality and structural
equation modeling (SEM), for instance, often struggle with
high-dimensional data, intricate temporal dependencies, and
spatial challenges of heterogeneity that are increasingly
common in contemporary spatiotemporal datasets. These
shortcomings underscore the necessity for more advanced
analytical techniques capable of addressing the demands of
data-intensive research [16]. Modern (or hybrid) approaches,
powered by advancements in machine learning and data min-
ing, offer promising solutions to these challenges. Deep learn-
ing models, including Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), and Long Short-
Term Memory (LSTM) networks, excel at capturing temporal
patterns and spatial features, making them well-suited for
spatiotemporal analysis. Graph Neural Networks (GNNs)
further enhance this capability by modeling complex spatial
relationships and dependencies. Despite their strengths,
these methods often lack explicit causal reasoning, limiting
their ability to uncover the underlying mechanisms driving
observed spatiotemporal phenomena [ 18], [22]. To bridge this
gap, emerging hybrid methodologies are gaining prominence.
Neural causal discovery models integrate deep learning
with causal inference, enabling the identification of causal
relationships in complex spatiotemporal datasets where tra-
ditional methods like Granger causality and SEM fall short.
Similarly, graph-based learning techniques leverage graph
structures to simultaneously capture spatial dependencies and
temporal dynamics, offering a more comprehensive analyt-
ical framework. Hybrid models further enhance robustness
by combining traditional statistical methods with modern
machine learning (for example, integrating SEM with GNNs
or augmenting spatial regression with RNN-based temporal
modeling). These innovations provide a more nuanced and
scalable approach to spatiotemporal data analysis [20], [23],
[38].

Ill. AN OVERVIEW OF RESEARCH AND APPLICATIONS

A. CAUSAL MACHINE LEARNING

In [5], a survey of causal machine learning and open
problems is provided. The authors cover important topics
like the categorization of causal machine learning into
five groups of depending on the problem to solve. This
paper reviews specific areas of application and provides
an overview of other benchmark solutions proposed by
causal machine learning applied in computer vision, natural
language processing, and graph representation learning. The
relevance of considering causality in machine learning is
presented in [37] where core concepts of this domain are
explained alongside different areas of application. This
survey provides a comprehensive review of causal machine
learning by introducing frameworks for causalities and
describing different methods applied in the domain. Recent
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developments in causal inference and machine learning are
discussed in [4] where the authors review advances in causal
inference with relevance to sociology. After a consistent
definition and description of the incorporation of machine
learning in causal inference, they presented the relevance
of including causal machine learning in sociology, believing
that this integration will reduce biases during analysis. The
importance of causality analysis in scientific research is
presented in [38]. In their research, the authors explained
the relevance of considering causal machine learning in
the field of oceanic science, where deep insight could be
provided not only to understand natural phenomena but
also to foster the explainability of machine learning (deep
learning) algorithms. Their research was applied in China,
providing satisfactory results in prediction and interpretabil-
ity compared to the benchmark. After a review of 20 papers
related to causal machine learning, in [8], the authors could
highlight that Bayesian networks are commonly used in the
context of causality while the propensity score is extensively
used in causality research. Furthermore, their study not only
systematically examined causal machine learning approaches
used so far, but they also considered the categorization of
data applied for causal machine learning based on the data
type, value, and dimensionality of the data. This review
offers a practical guide to the selection of causal machine
learning systems. An application of causal machine learning
to address fairness is introduced in [6]. After reviewing
notions and methods to detect and eliminate algorithmic
discrimination, the authors review causality-based fairness in
various fields, highlighting advantages and disadvantages of
its application. The value added of machine learning to causal
inference is presented in [9]. Based on their study, which
applies causal machine learning in the field of economics,
they conclude that causal machine learning methods are
more suitable than traditional methods to capture the effects
of the covariates. Furthermore, they also argued that these
methods of causal machine learning are useful in settings
with many confounders relative to the sample size, making
it suitable to treat such cases compared to the traditional
approach. An application of causal inference and deep
learning to estimate soybean yields using satellite remote
sensing data is presented in [7]. Through an empirical study
aiming to predict soybean yields using machine learning,
the authors noticed that the integration of causality (causal
relationship) improves prediction accuracy when dealing
with spatiotemporal remote sensing data. Furthermore, they
highlighted that this improvement is also the result of their
novel framework, which combines a structural causal model
with deep learning to provide a unique method to address this
problem.

B. SPATIOTEMPORAL DATA ANALYSIS

The ever-growing importance of spatiotemporal data in
research is discussed in [15] where the authors introduced
novel ways to develop algorithms and technologies to
capture, store, and analyze these data. Their claim is that
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these approaches are opening doors for various analyses
suitable to deepen one’s understanding of specific domains.
They also discuss the future of spatiotemporal data ana-
lytics, which offers promising advancements. Challenges
and opportunities presented in the domain of spatiotemporal
data mining (STDM) are presented in [18] where authors
unveiled the relevance of understanding efficient ways to
handle these complex data types. The study examines critical
challenges, including (1) complex implicit spatiotemporal
relationships, (2) interdisciplinarity demands requiring fusion
of multi-domain expertise and data, and (3) discretization
hurdles arising from scale, time-zone biases, and hetero-
geneous/dynamic data properties. It further identifies gaps
in prior research on such data. A survey on the use of
spatiotemporal data applied to traffic prediction is presented
in [39] where spatiotemporal data is portrayed as potentially
robust to address traffic-related issues when combined with
advanced processing techniques like machine learning. After
acknowledging the challenge of modeling spatiotemporal
dependencies to improve the forecasting capabilities of
algorithms despite the large presence of this data type, in [23]
they proposed a novel approach to achieve this task based
on graph neural networks architecture under the constraint
of cross-node federated learning. This technique could help
improve prediction accuracy when applied to traffic flow
forecasting. A similar approach is presented in [20] where
the need to capture dependencies within spatiotemporal data
was addressed using graph neural networks to improve
prediction accuracy. While this task was complex considering
the nature of the data, capturing existing relationships
between spatiotemporal features appears to be relevant for
advancement in the domain of predictive modeling.

Across diverse domains, causal machine learning and
spatiotemporal data analysis have demonstrated their utility
in uncovering complex relationships, supporting evidence-
based decision-making, and addressing critical societal
challenges. While existing studies have yielded valuable
insights, they also reveal persistent methodological chal-
lenges requiring further investigation. More importantly,
current research has not systematically explored the unique
opportunities and challenges emerging from the convergence
of causal machine learning and spatiotemporal analysis.
In Section V, we conduct a comprehensive examination
of these underexplored aspects, specifically, the emerging
opportunities and challenges at the intersection of these
methodologies, alongside with strategic directions for future
research.

Table 1 depicts major observations from the samples of
applications considered.

The synthesis of studies presented in Table 1 reveals
significant advances in the integration oftion of machine
learning with causal inference techniques, demonstrating
their comparative advantages over traditional machine learn-
ing approaches. Incorporation of causal frameworks into
spatiotemporal data analysis shows particular promise in

141836

overcoming the limitations of conventional pattern recogni-
tion methods. However, we could identify several persistent
challenges, such as the insufficient theoretical development
of the causal ML framework, the limited comparative
benchmarking against established methods, existing diffi-
culties in addressing complex confounding structures, and
the problematic assumption of sparsity without validation
mechanisms. Current research indicates that while these
approaches are promising, many implementations remain
inadequate and fail to incorporate state-of-the-art method-
ologies. This underscores the critical need for further
theoretical development and empirical validation. Notably,
the application of causal ML in spatiotemporal analysis
holds special significance for developing regions, where
it could substantially enhance decision-making in urban
infrastructure planning, agricultural productivity optimiza-
tion, or disaster preparedness and response systems. These
potential applications highlight both the timeliness and
importance of our current investigation into this emerging
interdisciplinary field.

IV. METHODOLOGY

A. DATA COLLECTION

We retrieved papers from five scientific platforms: Google
Scholar, Mendeley, Springer Nature, IEEE, and UCL Library
Services. We used keywords such as ‘“‘causal machine
learning”, “spatiotemporal data analysis”, and the combi-
nations ‘“‘causal machine learning AND spatiotemporal data
analysis” and “‘causal machine learning & spatiotemporal
data analysis”. These keywords were enclosed in quotation
marks to avoid irrelevant results. The search spanned
from 2014 to 2025, reflecting the recent development of
causal machine learning. We focused on peer-reviewed
papers (reviews and empirical papers), books, or book
sections to ensure confidence in the results. This approach
helped us retrieve relevant publications in these fields
separately and together, showcasing their individual and
converged advances.

B. RETRIEVED PUBLICATIONS
Table 2 summarizes the search result explained in
Subsection IV-A.

Based on the criteria explained in IV-A, UCL Library
Services retrieved the largest number of publications (49,709)
for all keywords, followed by IEEE (2,599), Google Scholar
(340), Mendeley (216) and Springer Nature (143). These
insights highlight the growing importancend wide-ranging
applications of causal machine learning and spatiotemporal
data analysis. The multifaceted and interdisciplinary appli-
cation of these methods is making substantial contributions
to computer science, environmental studies, and geogra-
phy. The variety of journals and subjects underscores its
broad relevance and applicability across different domains
in contemporary research. More details of the retrieved
result are provided in Appendix A. Interestingly, when

VOLUME 13, 2025



C. M. Mulomba et al.: Applying Causal Machine Learning to Spatiotemporal Data Analysis

IEEE Access

TABLE 1. Summary of Samples considered, including case studies, key finding, model specification, and limitations.

Author Case study Key finding

Model specifications Metrics Limitations

S. Ali and J.
Wang, 2022 [5]

Review of Causal Ma-
chine learning

Taxonomy of Causal ML
applications

Not Covered Not Covered Highlight
problems without

possible solutions

Atul Rawal et
al. 2022 [37]

Review of Causality
frameworks

Challenges in AI/ML
causality include lack of
data sets, ground truth,
standardized definitions,
evaluation metrics,
balance between causality
and performance, and
causal DL models

Not covered Distances between pre-
dicted causal graphs and
ground truth using ob-
servational data, ROC,
TPR, Precision, Recall,

F-1, F-test, and MSE

Emphasize prob-
lems but do not
offer solutions.

S. Arti et al, Identification of gen- Bayesian Networks are Bayesian Networks,  Confusion Matrix, Accu-  Limited insight
2020 [8] erally used Causal ML ~ commonly used in the Random Forest, racy, Recall, Precision, on Causal ML
approaches context of causalityand XGBoost, SVR, F-1 measures, Standard frameworks
the propensity score is Linear and Logistic  deviation
the most extensively  Regression,  Optimal
used metrics in causality = Discriminant Analysis,
research Ordinary Least Square
Lagrangian, Markov
F. Wang et al,  Soybean Yields esti- Improved performance in ~SCM-GAT based on R2, RMSE, rRMSE Limited
2024 [7] mation combining deep learning causal relationships confounding
with  structural causal
model

A. Baiardi and  Application of Causal  Superiotity of Causal ML

Double Machine Learn- ~ Magnitude, standard er-  Assumption  of

A. A. Naghi, ML on Econometric methods to traditional in  ing, Causal Forest ror sparsity which is
2024 [9] literature handling confounders, not testable
capturing  effects, and
conducting robustness
checks. Ideal for studies
with uncertain covariate
influences and for
identifying heterogeneity
A. Hamd et al.,  Survey on open chal- Huge potential of causal-  Not covered Not covered Limited insight
2022 [18] lenges of spatiotem- ity in spatiotemporal data on causlity and
poral data mining analysis causal ML
C. Meng, S. Application of Graph Improved data modeling Cross-Node Federated RMSE Limited
Rambhatla, and  Neural Network for and forecasting ~ Graph Neural Network benchmark
Y. Liu, 2021  Spatio-Temporal Data  performance in combining  (CNFGNN)
[23] Modeling federated learning with
graph neural networks
G. Jin et al, Predictive learning Improved data modeling  Spatio-Temporal Not covered State-of-art  for
2024 [20] scenarios in wurban  and forecasting ~ Graph Neural Network implementation
computing performance in combining ~ (STGNN) not provided

federated learning with
graph neural networks

combining the search terms ‘causal machine learning’ and/or
& ‘spatiotemporal data analysis’ (with quotation marks used
for all searches except those conducted in IEEE), the results
were limited. In fact, the IEEE retrieved only 12 publications
(3 journals and 9 conference proceedings), and UCL Library
Services produced 61 publications (13 books and 48 peer-
reviewed papers). This observation suggests that while both
fields (causal machine learning and spatiotemporal data
analysis) are well-researched individually, their intersec-
tion may represent a relatively nascent area of research
with significant potential for growth and innovation. This
finding highlights the need for further research to bridge
this gap and advance the field of causal inference in
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spatiotemporal contexts. Figure 1 summarizes the overall
process.

The results of our systematic search process, illus-
trated in Figure 1 reveal a limited convergence between
causal machine learning and spatiotemporal analysis in
peer-reviewed literature. Applying our rigorous selec-
tion criteria, we found that fewer than 1% of ini-
tially identified publications met our inclusion standards.
Although substantial discussion exists in gray literature
(blogs, web forums) and conference proceedings, the peer-
reviewed scientific literature on this intersection remains
remarkably sparse, indicating a nascent field requiring
further exploration. To maintain methodological rigor,
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TABLE 2. Summary of retrieved publications by keywords and sources.

Keywords Source Retrieved publications Observations
Causal Machine learning Google Scholar 258 Not specified

Mendeley 138 155 peer-reviewed papers, 3 books section

Springer Nature 61 All peer-reviewed articles

IEEE 388 379 peer-reviewed, 9 books

UCL Library Services 8,114 Books and peer-reviewed articles from all the resource
Spatio-temporal data analysis Google Scholar 82 Peer-reviewed articles

Mendeley 78 71 peer-reviewed articles, 1 book, 6 book section

Springer Nature 82 Peer-reviewed articles

IEEE 2,208 2,201 peer-reviewed articles, 7 books

UCL Library Services 41,534 Books and peer-reviewed articles from all the resource
Causal machine learning AND  IEEE 3 12 retrieved (3 peer-reviewed articles, 9 conference proceed-
spatiotemporal data analysis ings) but only peer-reviewed considered for analysis

UCL Library Services 61 13 books, 48 peer-reviewed articles

TABLE 3. Summary of the 51 selected publications with key contributions.

Aspects

Key contributions

References

Enhancing prediction accuracy

Causal machine learning techniques improve the prediction
accuracy of spatiotemporal data by identifying hidden causal
effects within these complex data types

[48], [96]-[99], [101]-
[114]

Overcoming pattern recognition limitations

These techniques are combined with existing machine learning
and deep learning algorithms to address the limitations of
pattern recognition

[96], [971, [99], [112],
[114], [115], [117], [118],
[147]

Improving interpretability

Causality discovery is utilized to enhance the interpretability of
complex machine learning algorithms, such as using graphs to
visualize potential connections between features

[119]

Various applications of Causal ML

Causal machine learning techniques are applied to improve
causal discovery and effects estimations in domains where
spatiotemporal data play a crucial role

[20], [25], [25], [104]-
[107], [109], [111], [112],
[114], [115], [117], [120]-

[123], [125]-[132], [136],
[137], [143]-[147]

we exclusively focused on peer-reviewed journal articles,
excluding:

« Conference proceedings (including 9 from IEEE),
o Books from UCL Library Services (13 which contained
only conference proceedings).

This selection process yielded 51 high-quality peer-
reviewed articles for our analysis. Through this compre-
hensive review, our aim is to provide deep insight into the
integration of causal machine learning with spatio-temporal
data analysis.

C. ANALYSIS OF THE CONVERGENCE
Through an in-depth review of the retrieved publications,
focusing on peer-reviewed papers as the books were confer-
ence proceedings, we uncovered the main areas where causal
machine learning has been utilized for spatiotemporal data
analysis. Table 3 summarizes these findings.

As illustrated in Fig. 2, the methodological focus of
surveyed studies reveals distinct research priorities:

o Causal discovery and effect estimation (32 studies):
The predominant application of causal machine learning
techniques, emphasizing the identification and quantifi-
cation of causal relationships in spatiotemporal data;
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« Prediction accuracy enhancement (19 studies): Sec-
ondary focus on improving predictive performance
while maintaining causal validity;

o Pattern recognition limitations (10 studies):
Approaches addressing the constraints of conventional
pattern detection methods in causal contexts;

« Interpretability improvement (1 study): The least
explored area, focusing on making complex causal
models more transparent when applied to spatiotemporal
data.

This distribution highlights a significant research gap in
developing interpretable causal machine learning frameworks
for spatiotemporal analysis.

These studies address multiple dimensions of causal
machine learning in spatiotemporal analysis, explaining
why we reference 62 methodological contributions while
analyzing 51 distinct papers. While these works demonstrate
significant advances, they systematically fail to:

1) Fully leverage specialized techniques that address
unique spatiotemporal challenges, particularly:

o Spatiotemporal Granger causality for dynamic
systems,
« Structural equation modeling with spatial lags,
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FIGURE 1. Summary of data collection process.

« Causal graph analysis for complex interdependen-
cies.

2) Provide comprehensive guidelines for implementing
these methods to solve core challenges:

o Capturing spatial autocorrelation effects,

« Modeling temporal dependencies in causal struc-
tures,

« Maintaining
complexity.

interpretability while handling

This critical gap in the literature reveals an urgent need
for methodological research focusing on these special-
ized approaches. In Section V, we conduct a thorough
investigation of these three key techniques, examining
their theoretical foundations, implementation challenges, and
emerging opportunities to establish clearer guidelines for the
field.
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V. INTEGRATION OF CAUSAL MACHINE LEARNING WITH
SPATIOTEMPORAL DATA ANALYSIS

The integration of causal machine learning with spatiotem-
poral analysis remains an emerging research frontier with
significant untapped potential. This section provides a
focused examination of three pivotal methodologies that
address the distinctive challenges of causal inference in
spatiotemporal domains:

« Spatiotemporal Granger Causality: Extends tradi-
tional temporal causality frameworks to incorporate
spatial dependencies;

o Structural Equation Modeling with Spatial Lags:
Integrates spatial autocorrelation into causal pathway
analysis;

« Causal Graph Analysis: Captures complex interdepen-
dencies in networked spatiotemporal systems.

These techniques were systematically selected for their
demonstrated capability to account for spatial autocorrela-
tion effects, to model hierarchical temporal dependencies,
to maintain interpretability despite system complexity, and
to scale to real-world spatiotemporal datasets. For each
method, our analysis investigates the theoretical founda-
tions and assumptions, implementation requirements and
computational considerations, current limitations, and open
challenges and opportunities.

A. SPATIOTEMPORAL GRANGER CAUSALITY

This method extends the traditional Granger Causality to
account for both spatial and temporal dependencies, allowing
the identification of the causal relationship over time and
space [46], [47]. To simplify its understanding, let us consider
two time series X; and Y, where ¢ represents the time.
The spatiotemporal Granger causality from X to Y can be
represented as shown in Eq. (1).

p q
Y= aYi+ Y BiXioj+ e €]
i=1 j=1

where:
- a; and B; are the coefficients,
- p and g are the number of lags for Y and X respectively,
- € is the error term, which represents the portion of the
dependent variable that is not explained by the model,
which accounts for the randomness and noise in the data,
as well as any unobserved factors that might influence
the dependent variable but are not included in the model.
The idea is to test whether the coefficients of X (B;) are
significantly different from zero, which means that the past
values of X provide information about future values of Y.
The statistical significance of the coefficients §; is typically
assessed through:
1) Wald tests: Examining whether the estimated coeffi-
cients differ significantly from zero [40], with the test
statistic represented in Eq. 2:

w=p8Ts"18, )
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where:

B is the vector of estimated regression coefficients

(e.g. B=1[B1. B2, ... Bpl"), R

- ¥ is the covariance matrix of B, capturing
the variances and covariances of the coefficient
estimates,

- 271 s the inverse of the covariance matrix, used
to standardize the quadratic form,

- W follows a x2 distribution with p degrees of
freedom (where p = number of coefficients)
under the null hypothesis.

2) F-tests: Comparing the residual sum of squares
between restricted (without X terms) and unrestricted
models [41], calculated as shown in Eq. (3):

_ (RSSg — RSSu)/q

"~ RSSy/(T —p—¢q)

3

where:
- T is the sample size,
- RSSR and RSSy are the restricted and unrestricted
residual sums of squares,
- g the number restrictions, and,
- p the number of predictors in the unrestricted
model.
3) Likelihood ratio tests: Evaluating the difference in log-
likelihoods between nested models with and without
the causal terms [42].

These approaches test whether the past values X provide
statistically significant information about future values Y
beyond what is contained in ¥’s own history. This rigorous
testing framework provides a more accurate and reliable
measure of causality, resulting in its extensive application in
several fields [43].
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B. STRUCTURAL EQUATION MODELING WITH SPATIAL
LAGS

This technique integrates spatial dependencies directly into
structural equation models, giving a comprehensive view of
causal relationships while accounting for spatial autocorrela-
tion [44], [45]. It is represented in Eq. (4) as:

Yi=p > Wy¥;+ BXi+ e, “)
J#
where, considering two regions i and j:

- Y; is the dependent variable for region i,

- p is the spatial autoregressive parameter,

- Wj;is the spatial weight matrix element between regions
iandj,

- X is the vector of independent variables for region i,

- B is the vector of coefficients for the independent
variables,

- ¢; is the error term for the regioni, which accounts for the
discrepancies between unobserved values and the values
predicted by the model for each region.

This approach captures the influence of neighboring
regions on the dependent variable Y; through the spatial lag
term W;;. This is crucial when the need to uncover causal
relationships in consideration of spatial autocorrelation
arises.

C. CAUSAL GRAPH

Utilizing graphical models to depict and analyze causal
relationships, this technique, like directed acyclic graphs
(DAGS), can help visualize and infer causal connections in

spatiotemporal data [48]. This can be easily explained by:
X—Y and Z-—>Y,
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three variables X, Y, and Z where X influences Y and both X
and Z influence Y. In such a scenario, Y is a function of both
X and Z, which can be represented mathematically as shown
in Eq. (5):

Y =Ff(X,Z)+e, )

where:
- Y is the outcome variable,
- X and Z are the predictor variables,
- f is afunction that describes the relationship between Y,
X,and Z,
- € is the error term representing the unobserved factors
affecting Y.

D. REAL-WORLD APPLICATIONS EXAMPLES

Some research has successfully converged these two domains
to overcome existing limitations. Table 4 provides a sample
of these examples, highlighting the aspect improved.

In urban planning applications, [96] employed causal
machine learning to analyze traffic patterns and optimize
public transportation routes. Their causal inference approach
successfully predicted traffic congestion in metropolitan
areas, leading to more efficient urban development strategies.

Causal machine learning has proven instrumental in
epidemiological studies, particularly in analyzing disease
transmission dynamics [99]. By employing causal discovery
techniques enhanced with machine learning, researchers
have successfully identified critical environmental factors
influencing disease outbreaks, enabling more targeted and
effective public health interventions.

The integration of causal ML with deep learning algo-
rithms has significantly improved the accuracy of spatiotem-
poral predictions in climate science, as demonstrated by [119]

These case studies demonstrate the capability of causal
machine learning to address persistent challenges in complex
spatiotemporal systems. The methodology shows particu-
lar promise in overcoming the limitations of traditional
correlation-based analysis, the difficulties in accounting for
spatial and temporal confounders, and existing challenges in
deriving actionable insights from high-dimensional datasets.

E. LIMITATIONS OF SPATIOTEMPORAL GRANGER
CAUSALITY, STRUCTURAL EQUATION MODELING WITH
SPATIAL LAGS, AND CAUSAL GRAPH WHEN APPLIED ON
SPATIOTEMPORAL ANALYSIS

While these methods offer powerful tools for analyzing
spatiotemporal data, they come with certain limitations:

1) SPATIOTEMPORAL GRANGER CAUSALITY

The application of Granger causality to spatiotemporal
analysis faces several inherent constraints. First, the method’s
foundational assumption of linear relationships between
variables often proves inadequate for modeling complex,
nonlinear system dynamics prevalent in real-world scenarios.
A second critical limitation arises in temporal lag specifica-
tion (selecting suboptimal time windows) that can generate
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spurious causal inferences, yet determining appropriate
lags remains theoretically and computationally challenging.
While the framework effectively captures temporal depen-
dencies, its capacity to represent spatial interactions is
often limited, particularly in high-dimensional datasets where
cross-location dependencies exhibit complex patterns. Most
significantly, the approach remains vulnerable to confound-
ing bias, as unaccounted spatial or temporal confounders may
systematically distort inferred causal relationships [36].

2) STRUCTURAL EQUATION MODELING (SEM) WITH
SPATIAL LAGS

Developing accurate structural equation models (SEM) for
spatiotemporal systems presents several methodological hur-
dles. First, model specification demands rigorous attention to
both spatial dependence structures and temporal dynamics,
requiring extensive validation to ensure theoretical fidelity.
A critical issue is model identification (the problem of
obtaining unique parameter estimates becomes increasingly
acute in high-dimensional systems with numerous interacting
variables). Measurement error further compounds these chal-
lenges, as even minor inaccuracies in observed variables can
propagate through the model, systematically biasing causal
effect estimates. Additionally, like spatiotemporal Granger
causality, conventional SEM implementations typically rely
on linearity assumptions that often fail to capture the
nonlinear interactions prevalent in real-world systems [95].

3) CAUSAL GRAPHS

First, reliably inferring the correct causal structure from
observational data remains problematic, particularly when
dealing with confounding variables and intricate interaction
patterns. A second major limitation stems from missing data,
which frequently introduces bias into causal effect estimates.
Perhaps most critically, the potential presence of unmeasured
confounders (variables influencing both cause and effect)
can systematically distort results. Furthermore, as system
complexity increases, these models often become computa-
tionally intensive while simultaneously losing interpretabil-
ity, creating validation difficulties, especially in large-scale
applications [48]. These challenges are particularly acute
in spatiotemporal contexts where dynamic dependencies
and spatial correlations further complicate causal structure
learning.

While the foundational assumptions of these causal tech-
niques may not universally hold for complex spatiotemporal
systems, they nevertheless establish essential theoretical
and computational frameworks for causal analysis. The
limitations discussed (ranging from linearity constraints in
Granger causality to identification challenges in spatial
SEM) highlight critical gaps that, when addressed, could
significantly advance the field. Rather than undermining
their utility, these challenges demarcate precisely where
innovative integrations with causal machine learning could
yield transformative improvements. Specifically, they reveal
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TABLE 4. Summary of real-world applications of Causal ML to Spatiotemporal data analysis.

Aspects Key Consideration Case Study/Example References
Enhancing Prediction Ac-  Causal ML improves prediction accuracy by ~ Used in urban planning and health to predict traf- [96], [97]
curacy identifying hidden causal effects. fic congestion, optimize road networks and improve

Parkinson’s disease prediction.
Overcoming Pattern ~ Causal ML addresses limitations of pattern ~ Applied in epidemiology to identify causal rela- [99], [112]
Recognition Limitations recognition in complex datasets. tionships between environmental factors and disease

spread.
Improving Interpretability =~ Causal ML enhances interpretability by visu- ~ Used in climate science to model the impact of CO2 [119]

alizing connections between features.

emissions on global temperatures.

Improving Causal discov-  Causal ML is applied to improve causal dis-
ery covery

Optimizing public transportation routes. [104], [106]

Enhancing Causal effect
estimation

Application of Causal to improve effects es-
timations

Various applications in domains such as urban plan-
ning and in predicting climate change impacts

[120]

opportunities to develop novel combination methods that
can leverage the strength of each technique to address the
limitations mentioned or to consider recent advances in
machine learning to architect hybrid models for the same
purpose. We systematically explore these research frontiers
in Section VI, focusing on methodological innovations that
could unlock the full analytical potential of spatiotemporal
causal inference.

VI. OPPORTUNITIES AND CHALLENGES

A. OPPORTUNITIES

Among the existing possibilities that can be considered, based
on the subjects covered previously, we present some key
opportunities to unlock the potential of spatiotemporal data
analysis with causal machine learning:

1) COMBINING METHODS

o Synergy of techniques: The combination of multiple
methods can strengthen the reliability and validity of
causal inference results. For instance, using Granger
causality to identify potential causal relationships and
then employing structural equation modeling (SEM) or
causal graphs to model the underlying causal structure
can provide a more comprehensive understanding of a
system despite its complexity [48].

o Simulation of combining Granger Causality and
SEM: For two timeseries X; and Y;, where X; Granger-
causes Y;, identifying potential causal relationships
(Granger-causality) can be achieved as shown in Eq. (6):

14 q
Yy=a+ > BYii+ D vXij+e.  (6)
i=1 Jj=1
where:

- a, B, and y; are coefficients,
- € is the error term,
- p and q are the lag orders for X; and, Y; respectively.

Given the Granger-causality model results, the model
underlying causal structure, using structural equation
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modeling (SEM) to account for direct and indirect
effects, can be represented as shown in Egs. (7)—(8):

Y = MX:e + MoZ + 6, @)
ZI == Q]X[ + GZ' (8)

where:

- A1, A2, and 6; are the SEM coefficients,
- & and €, are the error term vectors for Y; and Z;,
respectively.
The integration and synergy of Egs. (6)—(7)—(8) can form
the comprehensive model represented in Eq. (9):

q
Yo=X e+ D yXig |+ 0z +8. )
j=1

This integration offers a holistic approach to causal
analysis, leveraging the strengths of both methods.
Granger causality identifies potential causal relation-
ships based on the temporal order of events, while
structural equation modeling (SEM) captures complex
causal structures, including both direct and indirect
effects. By combining these methods, it is possible to
enhance the reliability of causal inferences through the
predictive power of past values and the consideration
of broader causal pathways. This comprehensive under-
standing of the system addresses the limitations of each
method individually, resulting in a robust analysis of
causal relationships. It is important to mention that
the integration of Granger causality, structural equation
modeling (SEM) with spatial lags, and causal graphs
represents a deliberate methodological strategy, where
each technique addresses distinct yet complementary
dimensions of spatiotemporal causal analysis. This
structured combination follows a logical hierarchy
of causal inference. Granger causality serves as the
foundational temporal test, answering whether variable
X systematically precedes variable Y in time. While
powerful for establishing predictive temporal ordering
(a necessary condition for causality), it cannot alone
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distinguish true causation from indirect or spurious rela-
tionships that might arise from unmeasured confounding
variables. Building upon this temporal foundation, SEM
with spatial lags introduces crucial spatial context by
simultaneously quantifying both time-lagged effects
and contemporaneous spatial dependencies. This proves
particularly valuable for phenomena like environmental
pollution, where effects may spill across geographic
boundaries. However, SEM’s reliance on predefined
linear structural equations risks model misspecifica-
tion without proper constraints. This is where causal
graphs provide essential theoretical grounding, mapping
plausible causal pathways based on domain knowledge
while excluding impossible or illogical relationships.
For instance, they might prevent statistically significant
but physically impossible links like rainfall directly
affecting stock market prices without an agricultural
intermediary mechanism. While causal graphs excel at
encoding structural assumptions, they lack the granu-
larity to quantify temporal or spatial effect sizes alone.
Together, these methods form a robust analytical chain:
Granger establishes temporal precedence, SEM with
spatial lags quantifies the multidimensional dependen-
cies, and causal graphs maintain theoretical consistency.
This integration systematically addresses the key chal-
lenges of spatiotemporal analysis (temporal dynamics,
spatial interactions, and structural plausibility) while
compensating for each method’s individual limitations
through their combined strengths.

2) ADVANCED STATISTICAL TECHNIQUES

o Addressing confounding and selection bias: Tech-
niques such as propensity score matching and instru-
mental variable analysis, though well-established in
other contexts, are emerging as potential methods to
tackle the complexity of spatiotemporal data. Propensity
score matching helps balance confounding variables
between treated and control groups, simulating ran-
domized experiments. In mathematical terms, it can be
represented as shown in Eq. (10):

e(X) = P(T = 11X), (10)

where:

- e(X) is the estimated propensity score,
- T is the treatment indicator, and,
- X is the observed covariates.

By balancing the distribution of observed confounding
variables between the treatment and control groups, which
reduces bias in estimating the treatment effect, and combining
it with instrumental variable analysis, which addresses
unobserved confounding by using an instrument (for instance
Z), that is correlated with the treatment 7' but uncorrelated
with the outcome Y except through 7', can help mitigate the
impact of confounding variables and selection bias, leading
to more accurate causal estimates [49], [50].

VOLUME 13, 2025

Indeed, instrumental variable analysis involves two stages:

The first stage consists of predicting the treatment and is
presented in Eq. (11):

T =m0+ mZ+mX +e¢, (11)

where:

in

- T is the treatment or intervention variable, which

indicates whether or not the subject received treatment,

- mo is the intercept term, which represents the baseline

level of the treatment when all predictors are zero,

- g1 is the coefficient for the instrumental variable (Z),

which measures the association between the instrumen-
tal variable and the treatment,

- Z is the instrumental variable, which is correlated to the

treatment 7' but not directly with the outcome Y except
through T,

- mp is the coefficient for the observed covariates (X),

which represents the effect of the observed covariates
on the treatment,

- X is the vector of the observed covariate, and,
- € is the error term.

This is part of the two-stage least squares method used

instrumental variable analysis. The second stage aims to

predict the outcome. It is shown in Eq. (12) as:

Y =Bo+ AT+ poX +n, (12)

where:

- Y is the outcome variable, the dependent variable that is

being influenced by treatment,

- Po is the intercept term, which represents the baseline

level of the outcome when all predictors are zero,

- B is the coefficient for the predicted treatment (f")

which measures the causal effect of the treatment on the
outcome,

- Tisthe predicted treatment variable from the first stage.

It is the fitted value of the treatment estimated using the
instrumental variable Z,

- P2 is the coefficient for the observed covariates (X)

which represents the effect of the observed covariates
on the outcome,

- X is the vector of the observed covariates, and,
- 7 is the error term, which accounts for the variability in

the outcome not explained by the treatment and observed
covariates.

In the two-stage least squares method, this latter stage

equation helps estimate the causal effect of the treatment
on the outcome using the predicted treatment (T) from the
first stage. This helps address hidden biases and confounding
variables, leading to more accurate causal estimates.

« Handling complex dependencies: Advanced statistical

methods, such as those used in spatial and temporal
econometrics, can account for spatial autocorrelation,
temporal dependence, and other complex relationships
in spatiotemporal data [51], [52]. For instance, incorpo-
rating Spatiotemporal Autoregressive Models (STAR)
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into causal machine learning for this purpose can be
explained as follows:

Having Y; as the dependent variable representing the
outcome for each time period ¢, and the covariates X; =
{Xi1, X2, . .., Xjp}, where X; represents the covariates at
time ¢. The spatial weight matrix W can be represented
as in Eq. (13):

Wi Wi -+ Wy,
W = Dot , (13)
Wn] Wn2 e Wnn

where each element Wj; denotes the spatial influence
between locations i and j.

The STAR model can be represented as shown in
Eq. (14):

Yi=¢WYi1 +XiB + nTYi—1 + &, (14)

where:
- Y, is the dependent variable at time ¢,
- ¢ is the spatial autoregressive coefficient,
- WY,_1 is the spatially lagged dependent variable
from the previous time period,
- X, is the covariate matrix at time ¢,
- B is the coefficient vector for covariates,
- is the temporal autoregressive coefficient,
- TY,_ is the temporally lagged dependent variable
from the previous time period, and,
- € is the error term.
Incorporating causal machine learning by considering
the propensity score matching (10) and instrumental
variable (11) and (12) to address confounding and
selection bias will help to provide solid outcomes.
The parameters (¢, B, ) can be estimated using the
maximum likelihood method shown in Eq. (15):

min > (Y = WYy = Xif = uTY,-)?. (15)
M

The validation of the model can be achieved by checking
the residuals €, for spatial and temporal dependencies.
The analysis of the estimated coefficients represented by
¢3, ,3, [t needs to take place to understand the influence
of spatial-temporal dependencies. The insight provided
by the STAR model for informed decision-making can
help analyze how spatial and temporal factors influence
the outcome. Assessing the impact of policies based on
¢WY,_1 and uTY,_; provides a robust way to analyze
the impact of the policies and interventions.

3) MACHINE LEARNING TECHNIQUES

o Causal discovery algorithms: Advanced algorithms
like the Peter and Clark algorithm (PC algorithm), Fast
Causal Inference (FCI), Additive Noise Model (ANM),
DoWhy, or Causal ML can be used to discover causal
relationships from observational data, even in the pres-
ence of latent variables and complex interactions [38],
[53].
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« To learn complex patterns and dependencies within
spatiotemporal data, deep learning models, such as
recurrent neural networks (RNNs) and convolutional
neural networks (CNNs), can be used to learn complex
patterns and dependencies in spatiotemporal data [55].

o Thanks to dedicated algorithms and machine learning
libraries like DoWhy and Causal ML, machine learning
techniques can be used to estimate counterfactual out-
comes, or counterfactual inference, allowing to assess
the impact of interventions [56].

4) DOMAIN EXPERTS
Domain experts provide three essential contributions to spa-
tiotemporal data analysis. First, they decode the underlying
physical, social, or environmental processes that generated
the observed data (knowledge that is rarely contained
in datasets alone). Second, they validate whether causal
relationships identified by algorithms align with domain
theory. Third, they identify subtle confounding factors (like
unmeasured variables or spatial autocorrelation effects) that
could distort conclusions [3], [19].

Effective integration of domain expertise requires two
complementary strategies, which are:

« Collaborative modeling, which establishes continuous
feedback loops where experts and data scientists
jointly refine models through successive iterations
(for instance, adjusting spatial weighting schemes in
disease transmission models based on epidemiological
knowledge) [137];

o Expert-informed feature selection, which prioritizes
variables with established causal significance in the
domain (like soil permeability in flood models) while
deprioritizing statistically prominent but theoretically
irrelevant features [138], [139].

This fusion of empirical analysis with domain knowledge
serves to improve model accuracy by grounding algorithms
in real-world mechanisms and enhance practical utility by
ensuring outputs align with decision-making frameworks in
fields like emergency response or ecosystem management.

B. KEY CHALLENGES IN SPATIOTEMPORAL CAUSAL
LEARNING

Beyond the algorithmic assumptions discussed in Section V,
the intrinsic properties of spatiotemporal data combined
with methodological constraints present significant hurdles
for causal machine learning applications. These challenges
emerge from both the complex nature of spatiotemporal
phenomena and the technical limitations of current analytical
approaches.

1) TECHNICAL IMPLEMENTATION CHALLENGES
« Spatiotemporal encoding: Developing effective rep-
resentations for spatiotemporal interactions remains a
fundamental challenge. The dynamic coupling of spatial
and temporal patterns (which often evolve at different
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scales) requires specialized encoding approaches. Irreg-
ularities such as non-uniform sampling intervals, hetero-
geneous spatial grids, and asynchronous measurements
further complicate the development of unified rep-
resentations that preserve critical dependencies while
remaining computationally tractable [57]. .

o Data sparsity and missingness: Spatiotemporal
datasets frequently suffer from incomplete observations
across both dimensions. The missingness mechanisms,
whether Missing Completely at Random (MCAR),
Missing at Random (MAR), or Missing Not at Random
(MNAR), each require distinct handling strategies.
Geographic and temporal imbalances in data coverage
can introduce substantial biases, particularly when
machine learning models trained on such data generalize
poorly to underrepresented regions or time periods [70],
[71].

+ Measurement noise and confounding: Multiple noise
sources degrade spatiotemporal data quality, including:

* Instrumentation errors from sensing devices,
* Environmental interference factors,
* Human annotation inconsistencies.

More critically, unmeasured spatial or temporal con-
founders that simultaneously affect treatment and outcome
variables can systematically distort causal estimates, poten-
tially leading to invalid conclusions [18], [73].

2) METHODOLOGICAL ISSUES

« Ensuring generalization in spatiotemporal causal
models: Selecting appropriate models for spatiotempo-
ral causal inference requires addressing two fundamental
challenges beyond simple sample size augmentation.
First, the inherent structural complexity of spatiotem-
poral data (where spatial autocorrelation violates
IID assumptions and temporal dependencies induce
non-stationarity) necessitates specialized regularization
approaches. Second, the causal specificity demands
preservation of identifiable structural relationships
beyond mere predictive performance. A model that
becomes overly complex may fit noise rather than
underlying causal patterns [74], leading to:

- Spurious causal edges in learned graphs,
- Biased treatment effect estimates,
- Poor generalization to new spatiotemporal contexts.

Effective mitigation strategies must account for these
unique aspects:

- Structural regularization: Spatial Graph Laplacian
Penalties (Lypariar = METLE) and temporal
smoothness constraints,

- Causal-aware validation: Spatiotemporal block
cross-validation to maintain dependency struc-
tures [24],

- Architecture selection: Prioritizing interpretable
causal architectures over opaque alternatives.
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These approaches, combined with careful hyperparam-
eter optimization, are essential for obtaining reliable
causal estimates [3]. Merely increasing sample size can-
not resolve the fundamental identifiability challenges
posed by spatiotemporal dependencies.

Handling biases: Biases can occur during data collec-
tion, analysis, and interpretation of the analysis [75].
Considering the scope of this research, we will focus
only on biases related to data collection. Thus, we have
the following biases:

* Confounding bias: This happens when an outside
factor (confounder) influences both the independent
variable (the supposed cause) and the dependent
variable (the supposed effect), leading to a spu-
rious association. In other words, the observed
relationship might not be due to the direct link
between the two variables but rather to this external
factor. Missing to measure or identify this external
factor can bias causal estimates. This challenge can
be addressed through sensitivity analysis, which
will help to assess the impact of the unmeasured
confounders on the estimated causal effects [76],
[77].

* Selection bias: It occurs when the sample chosen
for study is not representative of the larger pop-
ulation that needs to be understood [78]. This is
critical since it can lead to incorrect or skewed
conclusions since the sample does not accurately
reflect the diversity and characteristics of the entire
population. Two major types of biases can be iden-
tified in the selection bias. When the participants in
the study are not randomly selected, certain groups
may be overrepresented or underrepresented. Such
selection bias is called non-random sampling, and
when participants drop out during the study at
different rates across treatment and control groups,
we have the attrition bias, which can lead to a
biased result of the analysis [79]. To minimize their
effects, random sampling methods like simple ran-
dom sampling, stratified random sampling, cluster
random sampling, and adaptive sampling, coupled
with some follow-up analysis like kriging, Bayesian
inference, and Markov Chain Monte Carlo, can be
considered to account for any non-random sampling
effects and potential attrition [80].

* Measurement bias: Also known as information
bias, occurs when there are errors in the way data is
collected, leading to systematic inaccuracies. These
errors have the potential to skew the result of the
analysis, making the finding unreliable [81]. There
are several types of measurement biases, among
which we have the systematic errors, which are
inaccurate measurement instruments or procedures
in the same way. Social Desirability Bias arises
when participants give answers they think are more
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socially acceptable, instead of their true thoughts or
actions. Observer bias happens when a researcher’s
expectations or prior knowledge skew the measure-
ment process [82]. These errors can be addressed
by providing standardized procedures, blinding
(keeping participants and observers unaware of key
aspects of the study), or some appropriate training
related to the domain [84].

3) INTERPRETABILITY CHALLENGES
The interpretability of causal machine learning models for
spatiotemporal data faces five core challenges, which are:

« Inherent model complexity: The complex architectures
of modern machine learning models make causal
interpretation difficult [147],

o Multidimensional spatiotemporal dependencies:
Capturing and explaining dependencies across both
space and time adds layers of complexity to causal
analysis [148],

o Dynamic counterfactual reasoning requirements:
Spatiotemporal systems require counterfactual analysis
that evolves over time and space [31],

o Cross-dimensional feature interactions: Interactions
between spatial, temporal, and other feature dimensions
complicate causal attribution [151],

« Visualization difficulties for causal dynamics: Repre-
senting causal relationships in spatiotemporal systems
poses unique visualization challenges [85], [152].

To address these challenges, hybrid interpretability meth-
ods emerge as a particularly promising solution. These
approaches combine complementary techniques to leverage
their respective strengths while mitigating individual limita-
tions. For instance, the combination of causal graphs with
Shapley values integration, where the structural analysis
presented by causal graphs (DAGs) provides the qualitative
framework for understanding relationships between variables
and the quantitative assessment through Shapley values,
offers precise attribution of feature contributions within
this causal structure. This synergy potentially enables both
directional (graph) and magnitude (Shapley) interpretation of
causal effects. Another notable example is the combination
of attention mechanisms with feature importance ranking,
which offers a dynamic focus based on the attention
weights identified as relevant to spatiotemporal regions [ 149]
and feature validation through importance ranking, which
provides statistical grounding for attention patterns [151].
This dual approach could have the potential to reduce false
positives in identified causal relationships. These examples
could potentially address core challenges by reducing model
complexity through structured causal representations, explic-
itly modeling spatiotemporal dependencies via attention
mechanisms, supporting dynamic counterfactuals through
graph-based interventions, disentangling cross-dimensional
interactions via layered explanations, and enabling visualiza-
tion through hierarchically organized interpretability outputs.
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The above-mentioned interpretability approaches motivate
six critical research questions that bridge theoretical foun-
dations, methodological integration, and practical evaluation.
These questions are:

1) To what extent does integrating causal graphs (struc-
tural causality) with Shapley values (quantitative
attribution) improve both the explanatory depth (e.g.,
counterfactual reasoning) and attribution accuracy of
feature importance in spatiotemporal models, com-
pared to isolated interpretability methods? (Explana-
tory synergy) [31], [150];

2) Can the joint application of causal graphs and Shapley
values uncover higher-order interactions or hidden
confounders in spatiotemporal data that are missed
by conventional feature importance methods (e.g.,
permutation tests or gradient-based saliency)? (Latent
relationship discovery) [151];

3) What computational and interpretability trade-offs
arise when combining these methods? (Performance
trade-offs). For instance:

o Does the increased explanatory power of hybrid
approaches come at the cost of higher computa-
tional complexity or reduced scalability?

« How robust are these methods to noise or missing
data in spatiotemporal settings?

4) How can attention mechanisms (dynamic focus) and
feature importance ranking (global significance) be
jointly optimized to resolve conflicts when attention
weights and importance scores disagree and provide
hierarchical explanations (e.g., spatial attention +
temporal Shapley trends) for neural networks process-
ing spatiotemporal data? (Attention-feature alignment)
[149];

5) What technical architectures (e.g., modular pipelines,
end-to-end frameworks) most effectively combine
these techniques to handle non-stationary spatiotem-
poral dependencies and scale to high-dimensional
inputs (e.g., satellite imagery, urban mobility graphs)?
(Implementation challenge);

6) Whatevaluation frameworks (e.g., user studies, domain
expert reviews) can assess whether these hybrid meth-
ods genuinely improve model transparency for non-
technical stakeholders and enable actionable insights
in real-world applications (e.g., climate modeling, epi-
demiological forecasting)? (Stakeholder-centric evalu-
ation) [152].

Addressing these questions systematically will advance

interpretability solutions as model complexity increases [3].

4) COMPUTATIONAL CHALLENGES

The computational demands of causal machine learning
methods for spatiotemporal analysis present significant
implementation barriers. These techniques must process
complex dependency structures across both spatial and tem-
poral dimensions while handling high-dimensional datasets,
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creating substantial requirements for processing power and
memory allocation. As demonstrated in Table 5, three key
factors (time complexity, memory usage, and scalability)
determine their practical viability. Proper evaluation of these
metrics enables identification of performance bottlenecks,
optimization of resource utilization, and ultimately deter-
mines whether these methods can be effectively deployed
in real-world scenarios with constrained computational
resources [4]. This computational profiling becomes particu-
larly crucial when analyzing large-scale spatiotemporal sys-
tems where efficiency directly impacts analytical feasibility.

a: COMPUTATIONAL COMPLEXITY ANALYSIS

Time complexity measures how an algorithm’s runtime scales
with input size, providing crucial insights into its practical
feasibility for growing datasets. Similarly, space complexity
quantifies memory requirements during execution, determin-
ing hardware constraints for implementation. Together, these
complexity metrics form fundamental efficiency measures
for computational algorithms [133].

For causal machine learning methods to be viable in real-
world applications, they must demonstrate both time and
space efficiency while maintaining scalability (the capacity
to handle increasing data volumes and complexity without
prohibitive performance degradation). Scalability evaluation
examines:

o Growth rates of computational time relative to input
dimensions,

« Memory consumption patterns across data scales,

« Parallelization potential across distributed systems.

[134]
As shown in Table 5, these considerations have direct
implications for:

o Hardware requirements,
o Maximum tractable problem sizes,
o Optimization strategy selection.

b: TRADE-OFFS BETWEEN INTERPRETABILITY AND
SCALABILITY

o Interpretable methods Methods such as constraint-
based, score-based, and Bayesian networks are highly
interpretable and rigorous, making them suitable for
domains where transparency is critical (e.g., healthcare,
policy-making). However, their low efficiency and scal-
ability limit their applicability to small or medium-sized
datasets. These methods are best suited for problems
where interpretability is prioritized over computational
efficiency.

o Scalable methods Methods like machine learning and
deep learning can handle large-scale, high-dimensional
datasets and non-linear relationships, making them
suitable for complex spatiotemporal problems. How-
ever, they are less interpretable and require significant
computational resources. They are ideal for applications
where scalability and predictive accuracy are more
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important than interpretability (e.g., climate modeling,
urban planning)

¢: CHALLENGES WITH HIGH-DIMENSIONAL DATA

Most methods (except deep learning-based approaches)
struggle with high-dimensional data due to computational
complexity or scalability issues. This suggests employing
optimization strategies such as dimensionality reduction
or parallel computing to make them feasible for high-
dimensional spatiotemporal datasets.

d: SENSITIVITY TO MODEL ASSUMPTIONS

Methods like propensity score matching and Granger causal-
ity are sensitive to model misspecification or assumptions
(e.g., linearity). A Careful validation and robustness checks
are necessary to ensure reliable causal inferences.

e: DOMAIN-SPECIFIC SUITABILITY

Methods like Granger Causality are best suited for time-
series data with linear relationships, machine learning
(deep learning-based) methods are ideal for complex, non-
linear spatiotemporal problems, and Bayesian networks are
useful for problems requiring uncertainty quantification. This
suggests that the choice of method should align with the
specific characteristics and requirements of the problem
domain.

f: COMPUTATIONAL RESOURCE REQUIREMENTS

Machine learning (deep learning-based) methods and SCMs
require significant computational resources. Using them
requires consideration of appropriate resource and infrastruc-
ture, such as GPUs, distributed computing, etc.

g: NEED FOR HYBRID APPROACHES

Combining the strengths of different methods, such as
what is provided in this study, or using deep learning for
feature extraction and constraint-based methods for causal
inference, could provide a balance between scalability and
interpretability. This approach opens avenues to address the
limitations of individual methods.

As highlighted in Table 5, selecting appropriate causal
machine learning methods requires careful consideration
of interpretability, scalability, and computational demands.
No single approach represents a universal solution, neces-
sitating thorough evaluation of each method’s trade-offs
to ensure informed methodological choices. Addressing
computational constraints through optimization and hybrid
approaches enables more effective application of causal
machine learning to spatiotemporal analysis. For methods
challenged by high-dimensional spatiotemporal data, several
optimization strategies can enhance efficiency. Dimension-
ality reduction techniques such as PCA, t-SNE, and autoen-
coders [58] help preserve essential patterns while reducing
variable counts. Approximate inference methods, including
variational inference and Monte Carlo sampling [59], offer
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TABLE 5. Comparison of Efficiency and Scalability of the Causal ML methods presented.

Method Efficiency Scalability Strengths Weaknesses References

Constraint-Based Low Low Interpretable, handles latent con-  Exponential time complexity, struggles with [26]

Methods founders high-dimensional data

Score-Based Methods ~ Low Low Flexible, can incorporate domain  High computational cost, limited scalability [27]
knowledge

Propensity Score  Moderate Moderate Simple, widely used Struggles with large datasets, sensitive to [72]

Matching model misspecification

Structural Causal  Low Low Rigorous, handles complex causal  High computational cost, limited scalability [28], [141]

Models relationships

Machine  Learning-  High High Scalable, handles non-linear rela-  Requires significant computational [67]

Based Methods tionships resources, less interpretable

Granger Causality Moderate Moderate Simple, effective for time-series Limited to linear relationships, struggles [46], [47],
data with high-dimensional data

Bayesian Networks Low Low Handles uncertainty, interpretable High computational cost, limited scalability [52], [60]

computationally tractable alternatives for Bayesian network
analysis. Stochastic gradient descent [60] provides effi-
cient optimization for deep learning implementations, while
parallel computing frameworks like Spark and Dask [61]
enable distributed processing. GPU acceleration [62] proves
particularly valuable for intensive matrix operations in
deep causal models. Specialized causal discovery algo-
rithms, including Fast Causal Inference [63] and optimized
constraint-based methods [64], demonstrate improved scal-
ability. Spatiotemporal aggregation approaches [65] reduce
dataset dimensionality while maintaining critical patterns,
and model simplification strategies [66] focus analysis on key
variables and interactions. Incremental learning methods [68]
avoid full retraining by updating models with new data, and
feature selection techniques like LASSO [69] help identify
the most informative variables. Collectively, these strategies
enhance the practicality of causal machine learning for
complex spatiotemporal applications.

C. SUMMARY OF OPPORTUNITIES AND CHALLENGES

To summarize the opportunities and challenges discussed
above, Figure 3 presents a taxonomy organized into key
categories.

The taxonomy presented in Figure 3 systematically orga-
nizes both opportunities and challenges in applying causal
machine learning to spatiotemporal data analysis. On the
opportunity side, causal ML demonstrates significant poten-
tial for: (1) uncovering non-spurious causal relationships, (2)
enhancing model interpretability through structured causal
reasoning, and (3) generating actionable insights for critical
domains including climate science, urban planning, and
epidemiological modeling. Conversely, the framework iden-
tifies several persistent challenges, particularly the inherent
complexities of spatiotemporal data (spatial autocorrelation,
temporal non-stationarity), alongside methodological needs
for more robust inference frameworks, rigorous ethical
guidelines, and computationally efficient implementations.
This structured taxonomy serves as both a research roadmap
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and a practical guide for implementing causal ML in
spatiotemporal contexts.

VII. ETHICAL CONSIDERATIONS

The application of causal machine learning to spatiotemporal
analysis introduces significant ethical considerations that
demand careful attention. As noted by [18] and [19],
spatiotemporal datasets frequently encode societal biases
related to race, ethnicity, gender, and socioeconomic status.
For example, crime rate data may reflect historical policing
biases or neighborhood disparities, potentially leading to
models that perpetuate or amplify these inequities through
their predictions. Addressing these concerns requires a
multi-faceted approach throughout the analytical pipeline.
During data selection and preprocessing, researchers must
actively identify and mitigate embedded biases. Model
development should incorporate techniques like bias detec-
tion algorithms [75], fairness-aware machine learning, and
counterfactual fairness frameworks [86] to ensure equitable
outcomes across demographic groups. Beyond technical
solutions, [124] emphasizes the need for broader discussions
establishing ethical guidelines for technology deployment.
These dialogues should focus on risk assessment, respon-
sible use principles, and mechanisms to promote inclusive
outcomes that align with societal values. Such considerations
become particularly crucial when causal insights inform
policy decisions affecting vulnerable populations.

To enhance the reliability of causal inferences from
spatiotemporal data, advanced methods must address biases,
confounding, and sensitivity in considering:

« Bias mitigation: Techniques like reweighting (adjust-
ing sample weights to balance covariates), matching
(pairing treated/control units with similar features), and
propensity score adjustments (modeling treatment prob-
ability given covariates) can reduce selection bias [100];

o Missing data handling: Imputation methods such
as multiple imputation (generating plausible values
for missing points) and Expectation-Maximization
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FIGURE 3. Taxonomy of opportunities and challenges.

(iterative parameter estimation) improve dataset com-
pleteness [71], [94];

« Confounding control: Instrumental variables (affecting
outcomes only via treatment) and sensitivity anal-
yses (quantifying unmeasured confounder impacts)
strengthen causal validity [3], [141];

« Robust Sensitivity: E-values (minimum unmeasured
confounding strength needed to nullify effects) and
subgroup analyses (heterogeneous effect detection)
evaluate inference robustness.

When properly utilized, these methods can improve
the reliability and robustness of causal inferences using
spatiotemporal data.

Furthermore, the use of ‘“opaque” models in sensitive
areas like public health or urban planning can have seri-
ous societal consequences because their decision-making
processes are often opaque. Ensuring transparency requires
interpretability techniques such as causal graphs (for visual-
izing relationships), Shapley values (for quantifying feature
contributions), and counterfactual reasoning (for explor-
ing “what-if” scenarios). These methods help reveal the
underlying mechanisms driving predictions in spatiotemporal
contexts, with adaptations for temporal dependencies and
spatial correlations. For instance, time-varying factors can
be incorporated into causal graphs, while spatial interactions
can be addressed in Shapley value calculations. This trans-
parency enables stakeholders to critically evaluate outcomes
and ensure alignment with ethical standards [54], [84].
Knowing that spatiotemporal data often contain sensitive
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location and behavioral information, protecting them requires
strong measures, including data anonymization, encryption
techniques, and compliance with regulations like GDPR
and CCPA [74], [87]. Also, applications like predictive
policing require careful consideration of potential biases
and discriminatory outcomes. Inclusive discussions with
stakeholders are essential to identify risks, ensure responsible
use, and promote equitable outcomes [88], [89].

These ethical considerations are crucial for ensuring that
causal machine learning applications align with societal
values and contribute to positive outcomes.

The integration of ethical considerations into causal
machine learning for spatiotemporal analysis constitutes
a fundamental requirement for responsible research and
deployment. By systematically addressing transparency
requirements, privacy protections, and societal impact assess-
ments, researchers can ensure these techniques align with
established ethical frameworks while maintaining public
trust. This ethical foundation transforms causal ML from a
purely technical exercise into a tool for equitable decision-
making across sensitive domains, ultimately leading to
societally beneficial outcomes that respect individual rights
and community values.

VIIl. LIMITATIONS, FUTURE DIRECTIONS, AND
RESEARCH OPPORTUNITIES
This study uncovers potential and promising research direc-
tions and opportunities that can be summarized as follows:
o Interpretability and Causal explanation methods
[75], [86], [90]: Advancing techniques for explaining
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causal relationships in spatiotemporal data models, with
key objectives such as:

*k

Creating benchmarks for evaluating the inter-
pretability of causal machine learning models
in spatiotemporal contexts, ensuring standardized
comparisons across methods and domains,
Leveraging synergy methods (e.g., combining
causal discovery algorithms with visualization tools
like counterfactual explanations or feature impor-
tance maps) to enhance interpretability and make
causal analysis accessible to non-experts,
Designing user-friendly visualization tools and
interactive interfaces tailored for policymakers and
community stakeholders, enabling exploration and
understanding of causal insights without requiring
technical expertise,

Investigating human-in-the-loop interpretability to
integrate human feedback and domain expertise
into the causal machine learning process, ensuring
practical and actionable insights in domains such as
healthcare and climate science,

Exploring emerging techniques in counterfactual
inference, including new methods to simulate
“what-if”’ scenarios within spatiotemporal contexts
to improve decision-making processes.

o Causal Reinforcement Learning for Spatiotemporal
Policy Learning [91]: Developing methods to learn
optimal policies in reinforcement learning settings that
account for both spatial and temporal dimensions, with
a focus on real-world applications. Research priorities
include:

*k

Developing Safe and Fair Causal Reinforcement
Learning algorithms to ensure fairness and safety
in decision-making across spatial and temporal con-
texts, particularly for marginalized communities,
Creating benchmarks for evaluating the fairness and
safety of learned policies in domains like urban
planning or public health, ensuring policies do not
lead to adverse outcomes,

Exploring real-time policy adaptation techniques to
dynamically update policies as new data becomes
available, enabling continuous improvement in
dynamic environments,

Addressing biases in spatiotemporal data by incor-
porating fairness constraints into the reinforcement
learning process, ensuring equitable outcomes,
Investigating the integration of causal inference
with deep reinforcement learning architectures to
enhance policy learning in complex spatiotemporal
scenarios.

o Algorithmic advancements for scalable causal infer-
ence [92], [93]: Pushing forward the creation of
new algorithms and scaling techniques for large-scale
spatiotemporal datasets, with specific objectives such as:
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* Developing scalable causal inference methods
using distributed computing and optimization tech-
niques to handle large datasets efficiently, ensuring
computational feasibility for real-world applica-
tions,

* Creating benchmarks for evaluating scalability and
accuracy of causal inference algorithms in spa-
tiotemporal contexts, enabling standardized com-
parisons and progress tracking,

* Innovating real-time causal learning techniques
for dynamic environments, enabling continuous
updates to causal relationships as new data streams
in, with applications in areas like traffic manage-
ment and disaster response,

* Addressing challenges in high-dimensional spa-
tiotemporal data, such as feature selection and
dimensionality reduction, to improve computa-
tional efficiency and model performance,

* Exploring scalability improvements using advanced
parallel computing techniques such as MapReduce
frameworks and GPU-accelerated computing to
manage computational challenges in large-scale
causal inference models.

This research has several limitations that should be
acknowledged. First, the keyword usage strategy may have
restricted the scope of retrieved papers. Our exact-phrase
searches (using quotation marks) required terms to appear
in a specific order, potentially excluding relevant studies
using synonymous phrasing. Future work could employ
broader search terms initially, followed by rigorous relevance
filtering. Second, the search rigidity presents a trade-
off. While strict criteria improved precision, they may
have excluded pertinent studies. For context, preliminary
searches without quotation marks returned 158,000 results
in Google Scholar, 1,148 in Springer Nature, and 79 in
Mendeley - most irrelevant to our focus. A more balanced
approach might combine automated searches with manual
abstract/title screening to ensure comprehensive coverage
without sacrificing relevance.

IX. CONCLUSION

In this paper, we investigate the transformative role of causal
machine learning (Causal ML) techniques in spatiotemporal
data analysis, emphasizing the often-overlooked importance
of causality. Our study underscores how examining causal
relationships within features can reveal the true underlying
drivers of observed phenomena and enable more effective
responses to change. We explore the distinct challenges and
opportunities of integrating causal ML into spatiotemporal
analysis, along with the ethical considerations necessary to
ensure fair and unbiased outcomes. Additionally, we pro-
pose promising research directions, such as improving
interpretability, optimizing reinforcement learning policies,
and developing advanced algorithms for real-time causal
inference in dynamic environments. This work highlights the
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TABLE 6. Summary of retrieved publications by keywords (Causal Machine Learning) and sources.

Search terms Source

Journal names

Number retrieved

"Causal Machine Learning" Mendeley

SSRN Electronic Journal 18
Labour Economics:

Nature Communications:

Blood

Diabetes

Econometrics Journal

European journal of Operational research
European Review of Agricultural Economics
Health Services Research

IEEE Access

Springer Nature

Machine learning

Artificial intelligence
Computational economics
Data mining and knowledge discovery
Statistical learning

Bayesian network

Predictive medicine
Computational social sciences
Bayesian inference

Data mining

Non-parametric inference
Parametric inference
Attribution theory

Computer vision

Health informatics

Health policy

[e>exN
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potential of leveraging causal ML to enrich spatiotemporal
data analysis, paving the way for future advancements
across diverse fields. By providing robust and accurate
causal insights, our research aims to facilitate informed
decision-making and deliver innovative solutions to complex
problems.

X. APPENDIX
DETAILS OF RESULTS RETRIEVED
The distribution of retrieved publications containing the
search terms ““Causal Machine Learning” and “Spatiotem-
poral Data Analysis” is detailed in Tables 6—7. Our analysis
focuses on results from Mendeley and Springer Nature,
as these platforms provided both comprehensive coverage
and structured metadata suitable for systematic review.
While IEEE Xplore yielded a substantial number of matches
(approximately 12,000 results), the volume exceeded prac-
tical screening capacity for this study. The selected datasets
offer representative insights into current research trends at the
intersection of causal inference and spatiotemporal analysis.
For Springer Nature with the search term ‘‘Causal
Machine Learning”, the following are the disciplines and
subdisciplines covered:

A. BY DISCIPLINES
1) Computer science (12)
2) Economics (12)
3) Medicine and public health (9)
4) Science, humanities and social sciences, multidisci-
plinary (8)
5) Engineering (6)
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6) Business and management (4)
7) Biomedicine (3)
8) Earth sciences (1)
9) Environment (1)
10) Finance (1)
11) Life sciences (1)
12) Materials science (1)
13) Mathematics (1)
14) Statistics (1)

B. BY SUBDISCIPLINES

1) Artificial intelligence (8)

2) Science, humanities and social sciences, multidisci-
plinary (8)

3) Computer science, general (7)

4) Econometrics (6)

5) Economics, general (6)

6) Science, multidisciplinary (5)

7) Computer applications in social and behavioral sci-
ences (4)

8) Health informatics (4)

And for the search term ““Spatiotemporal Data Analysis”,

C. BY DISCIPLINES
1) Computer science (24)
2) Environment (11)
3) Geography (9)
4) Science, humanities and social sciences, multidisci-
plinary (9)
5) Earth sciences (8)
6) Engineering (7)
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TABLE 7. Summary of retrieved publications by keywords (Spatiotemporal data analysis)and sources.

Search terms Source

Journal names

Number retrieved

aAllSpatiotemporal data analysisaAl Mendeley

Land

Journal of Transport Geography

Acta Geotechnica

Advanced Hydroinfo.: ML and Optimization for Wa-

ter Resources

Aerospce Science and Technology
Annals of Operations Research
Applied Sciences (Switzerland)
Artificial Intelligence Review
BMC Public Health

Circulation

—_—— N

—_— e

Springer Nature

Geoinformatics
Geographical information system
Multivariate analysis

Data mining

Environmental geography
Regional geography
Machine learning

Time series analysis
Computer vision
Economic geography
Spatial demography
Spatial economics

Urban ecology

Air pollution and air quality
Applied statistics

Big data

AR PO DI IO O —

7) Economics (4)

8) Medicine and public health (3)

9) Business and management (2)

10) Biomedicine (1)
11) Life sciences (1)
12) Mathematics (1)
13) Social sciences (1)
14) Statistics (1)

The results highlight key disciplines and subjects: Machine
Learning leads with 26 occurrences, underscoring its
centrality in causal machine learning research. Artificial
Intelligence follows with 10 publications as a subject and
8 as a subdiscipline, reflecting its prominence. Computational
Economics and Data Mining/Knowledge Discovery each
have 7 publications. SSRN Electronic Journal stands out
with 18 occurrences, indicating its importance as a source
for causal machine learning research. Bayesian Networks
and Statistical Learning are also significant, showcasing
probabilistic approaches. Interdisciplinary applications are
evident in Computer Science and Economics (12 occurrences
each), as well as Medicine and Public Health (9 occurrences),
demonstrating healthcare applications. For spatiotemporal
data analysis, Computer Science dominates with 24 occur-
rences, followed by Environment (11 occurrences) and
Geography (9 occurrences), emphasizing its use in ecological
and spatial research.
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